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Externally Controlled Configurations
Enable Optimized Design

External windings or externally driven plasma currents
produce main magnetic fields.

Design configuration for desired properties:
good confinement, stability

New designs: more compact or simpler,
lower development cost,
more attractive end-product

Spherical Torus and Compact Stellarator:
- strong shaping (2D or 3D) for higher β-limit
- flow shear for confinement enhancement
- reduce disruptivity
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ST Maximizes the Good-Curvature Field Line
Length over the Bad-Curvature Field Line
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This leads to very high β and widens ST parameter domain.
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Spherical Torus Research Advances Magnetic
Fusion Science into New Territories

• Order-Unity Stable Beta-Toroidal

• Turbulence-Transport Suppression

• Self-Sustaining Configurations
(via Bootstrap current)

• Helicity Injection Startup
(similar to spheromak)

• Enhanced Plasma Exhaust Dispersion
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• Average toroidal βT → 40% (〈β〉→ 15%)
• Good confinement
• ~1/3 of NSTX Plasma Size

(Courtesy of START Team, U.K.)
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Concept Exploration Experiments
Confirm Promise of  ST Stability and Confinement
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ARIES Team Identified Potential for ST to Self-
Sustain at Very High Stable Beta (β)
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• Theoretical β-limit

• Self-sustained by
  bootstrap current

• Close fitting wall required
  for kink (long-wavelength
  MHD) stability

• May require feedback
  (as in tokamaks)

• Experiment:  can
  this be achieved?

A = 1.6, βN = 8.2, βT = 56%, 〈β〉 = 0.42%, fBootstrap = 99%



Turbulence May Self-Stabilize in Spherical Torus

(NSTX Profile)

Mach number = 0.5

   

Magnetic
Axis

Scaled
from TFTR

With rotation

From  �p

• Very high flow-shearing rates calculated, due to low magnetic field required

• Theory: stable to turbulent transport for R/a below 1.5

• Recent optimizations find self-consistent ST reactor designs with: 
  no significant turbulent transport, high-βT, bootstrap sustained.  
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ExB Shearing Rate
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Helicity Injection Startup Simplifies Coils
Demonstrated on Concept-Exploration Experiment  HIT-II

Plasma current driven via reconnection of externally driven DC current
Magnetic Fusion Energy



New U.S. Spherical Torus Experiments
affordable steps toward attractive fusion power

Proof of Principle
testing β-limits, confinement, sustainment

NSTX

Concept Exploration
of extreme low aspect ratio, R/a → 1.1

PEGASUS
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World ST Program Has Grown Rapidly
Since 1990

Proof of Principle Concept Exploration

TS-3
TST-M
HIST

Globus-M
Pegasus

ETE

MAST

NSTX
CDX-U

HIT-II

Complementary Proof of Principle Experiments:
NSTX (U.S.) MAST (U.K.)

Startup: Helicity Injection Compression

Stability: Conducting Shell Internal Coils
RF Heating: HHFW (6 MW) ECH (2 MW)
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Spherical Torus Promises Exciting
Scientific Advances  towards Practical Fusion Energy

Science → Energy

Order-Unity Stable Beta-Toroidal → Low Device Cost

Helicity Startup, Self-Sustaining Current → Simplified Magnets

Turbulence Transport Suppression → Small Unit Size

Plasma Exhaust Dispersion → Reduced Wall Heat Flux

⇒ Lower development
costs

Magnetic Fusion Energy
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PEGASUS
Globus-M  (R ~ 0.3−0.5m)
START, CDX-U, HIT

DTST
R ~ 1.1m
B ~ 1.7 T

NSTX
MAST
R ~ 0.8m
B ~ 0.3 – 0.5 T

Fusion Test Facility
R ~ 1.2 m
B ~ 2 T

ST Can Advance Fusion Science and 
Technology Using Small-Size Devices
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Stellarators: 3D Shaping Provides Flexibility

• Toroidal magnetic confinement systems, like tokamaks and STs

− but, not symmetric !

• Disruptions are not observed in
stellarators, even at highest
parameters.

• External coils can supply whole
magnetic field  ⇒ eliminates need
for external current drive  ⇒ steady state

• Can choose 3D shape to optimize stability, transport

⇒ In the world program, only new large experiments are stellarators
    LHD (Japan),  W7-X  (Germany)          ~$1B each,  superconducting

But, extrapolate to large, low power density  systems

W-7X
~2006



LHD Has >10x the Volume, Heating Power, and
Pulse Length of Previous Stellarators

• R = 3.9 m, B = 3(4) T, P ~ 40 MW

• Expect Ti~ 10 keV, τE > 0.2 s, nτT ~1020

Japan
op. in 1998
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Proposed U.S. Program in Compact Stellarators

• Revolution in theoretical understanding + recent experimental results
  → numerical design of attractive compact stellarators

− excellent plasma confinement

− high β stability

− design to theoretically stabilize troubling instabilities
  e.g. long-wavelength external kink

− eliminate disruptions

• Combine physics advances with stellarator flexibility
             → more compact designs

− Existing optimized stellarators have high aspect ratios,  R/〈a〉 ~ 8 - 11

− can get  R/〈a〉  ~ 3  - 4  using improved stability and some bootstrap
current

     ⇒ reduce size & cost of experiments, raise reactor power density
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NCSX: National Compact Stellarator Experiment
PPPL, ORNL, Auburn U.,Columbia U., NYU, U.Texas, U.Wisconsin

• R/<a> =3.4

• Theoretically:
stable β ≥ 4% to ballooning,
neoclassical-tearing

Stable to external kink
without conducting wall
or feedback
⇒ simpler system

Vertical stability without feedback system!

• Experiment:  test stability, immunity to disruptions at high β

• Proposal: build re-using components of existing tokamak   



               Magnetic Fusion Energy

0.001

0.01

0.1

1

0.001 0.01 0.1 1

W7-A
W7-AS
ATF
H-E
CHS
LHD
Mid-Tokamaks
DIIID
JET
JT-60
TFTR

τ (s)

τE
ISS95

 (s)

E

Stellarators & Tokamaks Have Similar Confinement,
Empirically

• Measured global energy
confinement time vs. empirical
stellarator regression fit.

• Stellarators & Tokamaks,
interspersed

• Enhanced confinement modes
observed in both stellarators &
tokamaks

Confinement enhancement
stronger in tokamaks, so far

L-mode
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 NCSX Transport Optimization:  Quasi-Axisymmetry

• 3D shape of standard stellarators ⇒  orbits can have resonant
perturbations, become stochastic ⇒ be lost

  ⇒ rotation is strongly damped

• NCSX is designed to be ‘quasi-axisymmetric’
i.e. to be nearly axisymmetric in magnetic (“Boozer”) coordinates

⇒ should have transport very similar to tokamaks
     including ability to manipulate flow shear to control transport

• Experiment:  test turbulent transport stabilization in a stellarator using
flow shear, as developed in tokamaks.



Concept Exploration StellaratorsConcept Exploration Stellarators
Test Fundamental Principles, Complement NCSXTest Fundamental Principles, Complement NCSX

•  HSX     (1999)
– first test of quasi-symmetric transport
   optimization
– high effective helicity,  qeff ~ 1/3
– R/〈a〉 = 8

•  QOS     (Proposed)
– First test of non-symmetric W7-X optimization
– Optimized for reduced bootstrap current
– R/〈a〉 ~ 3 - 4
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Compact Stellarators Offer New Paths Forward
Scientific Advances  towards Practical Fusion Energy

Science → Energy

Disruption-less → Reduced Risk, Costs

No or Reduced External Current Drive → Steady State
Low Recirculating Power

Low Aspect Ratio → Smaller Unit Size

Transport Optimization → Reduced Size

Demonstrating these Capabilities will give 
new 3D-shaping tools for all MFE Configurations
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The Compact Stellarator Could Combine the Best
Features of Tokamaks and Stellarators

• Compact, power density similar to tokamaks
• Without disruptions or external current drive
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Summary

• Externally controlled configurations allow scientific design of optimized
configurations and experiments

• Building on advances in understanding from experiment, theory, and
computational modeling, novel attractive configurations are available to
advance MFE

− Spherical Torus

− Compact Stellarator

− Other configurations at CE stage:  Dipole

Common theme: more compact, lower development cost

• Need to test these ideas experimentally

− To test & develop our understanding of magnetic fusion physics

− To explore attractive options for fusion energy development


