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Compact Stellarators Offer Innovative Solutions
 Can combine the best features of Stellarators and Advanced Tokamaks

• Stellarators:  Externally-generated helical fields, low recirculating power,

typically disruption free.

• Advanced tokamaks:  Excellent confinement, low A – high power density,

bootstrap current

• Compact Stellarators:  Use 3D shaping flexibility to combine best features

Advances in Theory and Numerical Design Capability ⇒ Compact Stellarators

• 3D shaping to passively stabilize external kink, vertical, neo-tearing, ballooning

− expand safe operating area to β ≥ 4%

− prevent disruptions?

• Steady state without current drive.

• Aspect ratio:  ~ 4

• Good confinement. Quasi-axisymmetry to close drift-orbits, allow plasma flow
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NCSX Physics Opportunities & Goals
• Understand role of external transform & 3D shaping in disruptions

• Understand role of kink- and ballooning modes in beta-limit
   - tokamak-like vs. toroidally localized ballooning

• Test quasi-axisymmetric reduction of neoclassical transport.
Understand induced flow-damping.

• Understand turbulence in quasi-symmetric configuration.
   Effect of quasi-symmetry and Er on confinement, ability to induce
   enhanced confinement

• Understand neoclassical-island stabilization using externally imposed
islands

• Understand Alfvenic-modes in 3D geometry

• Understand effect of 3D shaping and flux-surface topology on edge
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NCSX Method:  Design for  High β
• Most stellarator designs have been optimized in the vacuum

configuration, then evaluated at high beta

• NCSX plasma and coils are designed for desired properties at
   〈β〉 ~ 4%, including effect of bootstrap current

• Required substantial tools development
− Coil optimization including plasma currents
− Improved 3D equilibrium codes – PIES and VMEC
− Kink and ballooning stability calculations inside optimizer
− Transport and bootstrap calculations inside optimizer
− Approximate coil design inside optimizer
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Previous Configuration Stable at  〈β〉 = 4%
Key Physics Properties
• 3 periods, 〈A〉=3.4
   Quasi-axisymmetric

• Stable to ballooning, kink,
   vertical, mercier modes

without conducting wall
or feedback control at 〈β〉=4%
(limited by kink)

• Stellarator shear  (dq/dr < 0), for neoclassical island stabilization
− Without need for ECCD feedback

Further detailed analysis indicated:
• Coil current densities relatively large, limiting flexibility
• Flux surface quality − poor at edge for high-beta

C82
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Identified Regions of Opportunity
Have Been Explored

− Aspect ratio, A: 3 − 5                (outside PBX-M constraint)
− Average elongation up to 3      (exploiting robust vertical stability)
− Vacuum magnetic well         (suggestions by P. Garabedian)
− Edge iota  ι(a):  0.47 − 0.78
− External transform fractions at β-limit:  50 – 80%
− 2, 3 periods

• Major distinguishing characteristics:
             flux-surface quality & coil  Jmax

• Attractive new design configuration has been identified
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New Attractive Configuration
• 3 periods, 〈A〉=4.4, 〈κ〉~1.7

• Stable to ballooning, kink,
   vertical, Mercier at β=4.1%

• Limited by ballooning, thus
   should be able to optimize profiles

• Good flux surfaces, except one
   significant island chain

• Saddle-coil current density
    ~ ½ of C82, less complex

                                                                                                                                                   LI383
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 New Configuration: Low effective ripple

• εeff from NEO code by
   Nemov-Kernbichler

• In 1/ν regime,  neoclassical
   transport scales as  εeff

3/2

• New configuration is better
By factor ~2 across profile

• Edge εeff ~ 3.5%

• Allows counter-inj.  NBI

• Higher iota improves axisymmetric neoclassical confinement
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New 3-period:  Low Helical transport

• Helical transport is sub-dominant with self-consistent Er

• Assume B=1 T, HISS95=2.6 (HITER-89P=1.1), Pheat=5 MW
    ⇒ β = 4%, ν* ~ 0.25
• Toroidal neoclassical dominant, due to moderate size and ‘reversed

shear’  ⇒ limited poloidal flux
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B = 2T Allows Low Collisionality

• Helical transport is still sub-dominant
• Assume HISS95 = 2.6, Pheat = 5 MW  ⇒ ν* ~ 0.04, β = 1.7%
                 HITER-89P = 0.95
Allows study of plasmas with reactor-like collisionality
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Flux-surface Studies:  Startup looks Ok

Vacuum Full current, β=0 target Full current, β=4.2%
• Fixed boundary PIES equilibrium calculations. Free boundary underway
• Addressing FESAC question of flux-surface robustness
• Large island at ι=0.6, w/a~0.13 for β =0,  w/a ~0.1 for β =4.2%
   Neoclassical effects reduce it to effectively < 5% at full β
• Time-dependent startup modeling in progress
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Island removal method

• Modify island widths by adjusting resonant Fourier components of
plasma boundary shape

• Calculate coupling between plasma boundary shape and island
widths using PIES

• Invert coupling matrix to find shape modification to remove islands

• Tested on old configuration:  major islands widths reduced a
factor of 2 by adjusting two boundary coefficients by ~1.4 mm

• Analysis underway on new configuration
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Multiple Coil Designs Offer Opportunity

• Optimized saddle coils
   for 3D field
• + PF + TF coil sets

• Optimized modular coils
   for 3D field
• + PF + weak TF coil sets

Which gives better flexibility?  Better flux surfaces?
Better access?      Analysis underway…
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Flexibility and Robustness Studies

• Robustness
− Vary profiles for fixed total current and b
− Vary total current and b for fixed profiles

• Flexibility
− Vary coil currents to change external-iota
   for fixed current and beta while optimizing quasi-symmetry
   (e.g. for transport and stability studies,
           or avoiding resonances)

• Initial Results indicate good robustness and flexibility
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Plasma Profiles for Robustness Studies

current pressure
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Robustness Reconstructions

•  IP = 150 kA, β = 4%

• all combination of profiles

• Modular coil currents held
fixed, PF currents varied

• Being used to characterize
variation of physics
characteristics vs profiles
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IP = 150kA, β ~ 1%
• Can avoid edge iota = ½ resonance

Wide Range of Iota Available
Perturbed modular coil currentIota profile vs. flux (s)
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Full β configuration: iota crosses ½

• Full-β, full current iota crosses ½
− Can produce disruptions in W7-AS
   when crossing near edge

• ∆′ calculations (Knowlton, Fredrickson)
  (cylindrical approx.) indicate very small
  islands could form (3.5% of radius)

• Vacuum iota everywhere below ι = ½
   ⇒ edge will pass thru ½   (q=2) during
   ramp up, may be disruption prone

• Flexibility studies indicate this can be
   avoided



MCZ 000612

Preparations for Physics Validation Review

• Remove remaining islands in configurations
− Check effect on physics and coils

• Free-boundary PIES reconstruction from coils
− Flux surface quality and robustness

• Flexibility & robustness assessment of coil designs
− Ability to support our physics goals and program
− Demonstration discharge scenarios

• Develop divertor/limiter physics design

− Decide between different coil topologies
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Conclusions

• Exciting new configuration has been identified
− 3 period:  higher iota, low coil current density

• All of the issues with the old configuration have been addressed
− Flux-surface quality, coil currents, transport optimization

• Analyzing coil designs, free-boundary flux-surface quality, and
flexibility and robustness to prepare for PVR.


