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ARIES Compact Stellarator Reactor Study

* 3-4 year study to explore attractiveness of compact
stellarators as reactors

* 3 configurations studied thus far
— “NCSX-R” with R/a = 4.4, but modular coils have larger R/A

— “MHH2” with tokamak-like shear, R/a = 2.7 and 3.75

min

* ARIES reactor assessment covers multiple aspects
— configuration exploration
—> parameter determination and cost optimization
— blanket/shield models, superconducting coil design
— maintenance, heat removal, safety, etc.



Motivation for a CS Reactor Study

°* German HSR with R/a=10.5 had R =24 m (now 18-22 m)
— estimated CoE ~1.6 x tokamak reactor?

* ARIES SPPS (~1994) reduced reactor size and cost
— based on Garabedian’s 4-field-period “MHH4” with R/a=8
— R =14 m due to smaller R/a and R/A

— estimated CoE same as ARIES-IV tokamak reactor

min

— but configuration was not optimized, physics analyses weak

* New optimized compact stellarators have R/a< 4.5

— more developed physics basis, does smaller R/a has the
potential for smaller R and lower CoE?

= NCSX provides most developed configuration for ARIES case

=> ARIES study can point out reactor-critical issues that need to
be resolved in a compact stellarator experiment



Parameter Determination Integrates Plasma/Coil
Geometry and Reactor Constraints

Plasma & Coil Geometry
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Staged Approach in Defining Parameters

* 0-D scoping study determines device parameters
— calculates <R,,;>, <B, ;s> <B>, <P, war> Bmax: Jeoir €LC. SUDject to

axis axis

limits and constraints

* 1-D power balance determines plasma parameters
and path to ignition

— incorporates density and temperature profiles; overall power
balance; radiation, conduction, alpha-particle losses

* 1-D systems cost optimization code

— calculates self-consistent temperature profiles, electric field and
power balance

— calculates reactor component and operating costs

* Examine sensitivity to models, assumptions &
constraints at each stage



Example of 0-D Approach

° e.g., fix max. neutron wall loading p,, ., at 5 MW/m?
— peaking factor = 2 (1.5?) —p use <p,, ,,,;> = 2.5 MW/m?

* also examined <p,, ,,.,,> = 2 and 3 MW/m? as limits

— <Pyar> = 2.5 MW/m2 —» wall area = 640 m? for P, ,, = 2 GW
= <R>=7.20 m for NCSX-R vs. <R> = 14 m for SPPS!
— <fR>=5.70 m for 8-coil MHHZ2, 6.78 m for 16-coil MHH2

* cost of main reactor components (blanket, shield,
structure) same for all 3 cases since cost ~ wall area

* correction for coil and blanket replacement costs

* Chose <> = 6%; also examined 4% as pessimistic limit
— no credible instability model for g limit; equilibrium better

= B,,;s =5.80 T for NCSX-R for P, =2 GW
= B, = 5.36 T for 8-coil MHH2, 5.54 T for 16-coil MHH2
* B, ., on coil depends on coil cross section
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Radial Space Available Constrains B, _,

Radial gap is the extra
space between the
removable blanket and
the fixed shield/coil
structure

Lower B, is obtained
with larger colil pack size

==> smaller gap
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Variation with <p,,.,>, B, Configuration

Coil <Pnwar>
Configuration (MW/m?) <R>(m) Baxis (1), 4% F | Boxs (1), 6% B

2 8.07 6.53 5.33

NCSX-R 2.5 7.20 711 5.80
3 6.57 | @ ----- 6.22

2 6.40 6.02 4.92

MHH2 (8) 2.5 5.70 6.56 5.36
3 | | T

2 7.60 6.23 5.09

MHH2 (16) 2.5 6.78 6.79 5.54
3 6.18 | - 5.94

* Successful in reducing reactor size (<R>) by factor ~ 2!
(need to verify with 1-D and systems/cost optimization study)

° SetB, ,=16T



0-D Parameter Determination Is Limited

0-D reactor parameter determination only involved <R>, <a>,
<B,,is> <Pnwar>> <p> and coil cross section

Want to minimize the CoE: 2 components of interest

— initial construction costs, mostly area-related: blanket, shield,
structure -- min. area => max. p,, ya;

= coil costs: min. d?, not same scaling as above components
— operating costs (blanket replacement) -- long life => min. p, ..,
— need systems code analysis to optimize costs

Need 1-D power balance (POPCON) analysis to determine plasma
(and device parameters), involves

— density and temperature radial profile shapes
— impurity levels and profiles
= effect on radiation losses and
— alpha-particle losses, confinement model (H-1SS95)
— ignition contours and startup paths



Determination of Plasma Parameters

°* Too many variables, need to make some parameter assumptions
— choose H-ISS95 < 5 (twice present maximum experimental value)
= assuming improvements due to quasi-symmetry and experience
— choose impurity levels: 1% C and 0.01% Fe (OK?)
— 30% alpha-particle losses (a better case is being developed)
— choose 1, /1 = 2: too low?, f,, too high (fy; too low) for higher
values, no operating point

* Choose profile shapes
— choose hollow n_(r) with center/peak = 0.8 (right choice?)
— choose neoclassical impurity profiles n, ~ n ?
— choose T ~ parabolic'-5, but not consistent with radiation

" need better transport model (x, E,) to determine self-consistent T(r),
Ti(r)

= full 1-D model with self-consistent E, and radiation is in the systems
code (later step)

* Test sensitivity to these assumptions



Treatment of Impurities

° Impurities reduce P;,,, through reduced np;? and
reduced T, (hence T, through radiative power loss

— requires larger B, H-ISS95 or R to compensate

* Use carbon for low Z & iron for high Z and standard
coronal model: line radiation and electron-ion
recombination

* Use neoclassical impurity transport model

= Nz(r) = n(r) X <f> (Ng/Neo)” [ Te/ Teol™°

— ignore [T /T,,]7#° term because it probably is not applicable in
stellarators

— ny(r) is hollow for regime of interest in stellarators ==> n,(r)
peaked near edge
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H-ISS95 Required Increases with <g>
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H-ISS95 Required Increases with f_ .
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QA configurations with f,
< 10% are being developed

Useful to reduce wall
particle power flux
(including o loss)

— if <p, war> ~3 MW/m?
(<Py war> ~ 0.75 MW/m?)
& divertor ~10% of wall
area), then <p i erior> IS
~ 7.5 MW/m?2 and peak
values much higher

— increasing power
radiated to the wall can
alleviate divertor
problem
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Reactor-Relevant Issues for NCSX #1

 Density and temperature profiles are assumed
— What are reasonable transport coefficients (D, x)?
ambipolar electric field? bootstrap current?

— Is neoclassical impurity model OK?
Is n(r) hollow?

* Required confinement multiplier (H-ISS95 ~ 4) is
calculated

— How does confinement scale with plasma and
configuration parameters?

— Does quasi-symmetry, smaller ¢4 and reduced
flow damping lead to improved confinement?



ISS-95 Confinement Scaling Updated
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Reactor-Relevant Issues for NCSX #2

B limit is assumed -- no credible model exists

— What are actual g limits and their dependence on
configuration parameters?

Disruptions are ignored
— Can disruptions be avoided?

Power density to the divertor is very high

— Can power density on the divertor be reduced?
(larger footprint?, fixed magnetic islands?)

— Can radiated power to the wall be increased?

Alpha-particle losses are high at present

— What are energetic ion losses? Can they be
reduced?



Summary

3-4 year ARIES study is underway to explore compact
stellarators for their reactor potential

Study involves concept exploration + physics,
engineering and cost optimizations

Parameter determination involves all the optimization
components

Initial results lead to factor ~2 smaller stellarator
reactors, closer to tokamaks in size (lower CoE?)

— no need for current drive or disruption protection

Study points up uncertainties in reactor physics
assumptions that NCSX can help clarify



Backup



Three Configurations Have Been Studied

NCSX-R | MHH2 (8) | MHH2 (16)
Plasma-coil aspect ratio A, = <R >/A,;, 5.90 5.52 4.91
Min. coil-coil aspect ratio A_. = <R>/(c-C),,,, 10.1 13.3 7.63
Plasma aspect ratio A, = <R>/<a> 4.50 3.75 2.70
Rotational transform .., shear (¢, — tp)/t.e 0.5, 0.6 0.45, -0.22

stell shear | tokamak shear
Surface figure of merit AA2/Ap 7.74 8.13 8.93

“NCSX” MHH2
sector access

(end) through
access ports

both quasi-axisymmetric




n,(r) Hollow in Stellarators at Low v*
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PNBI = 6.5 MW, T (0) = 1.9 keV (more hollow at lower collisionality)
I

« Even flat n(r) in W 7-AS produces impurity profiles peaked
near the edge

« Assume n(r) slightly hollow and T, (r) peaked on axis



