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| Introduction '

/

« Physical properties of a specific L=1 / M=4 Helical Axis
Heliotron (Heliotron-J) are studied.

* One of the main purposes of this machine is to do the
basic study of configuration optimization experimentally.

« A continuous helical coil winding is adopted by
considering experimental flexibility and plasma accesibility
(diagnostics, heating and divertor) in a relatively small size
of experimental device.

e Two sets of TF coils with a different power supply are
used to control the toroidal mirror component of magnetic
field strength to verify the “Linked Mirror” concept.

» The results we have obtained up to now will be shown.




Characteristics of L =1 /M =4 Helical Axis Heliotron]
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Reduction of neoclassical ripple transport
by toroidal mirror component (bumpy field)

Model field
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=== Shaing-Hoking formula for 1/n neoclassical transport

Guft((/ ninl 1)

Toroidal effects (breaking
guasi-helical symmetry)
* on N-C ripple transport
can be reduced by the
bumpy field

0.0 02 04 06 0.8 1.
€/€En

Contoursof fCi/ ni o/ 1)



| Coil Configuration '

* Helical field coil (HF coll)
winding law
“R=R, +a,cos
Z =a,sin

\

= +(M/L) - sin(M/L)

R.=12m, a,=022m
=-04

e Three sets of PF coils

* V/ coils
e AV
coils
e Two sets of TF coils
e TA

coils
\ » TB coils

K0 |1, =87 is fixed. N
<—— power supply
@ |, =» plasma position
@ |, +1, =» plasma shaping
@ I, +1, =» rotational transform
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Top View of Coil Configuration



Coils and Vacuum Vessel of Heliotron-J




l Properties of Vacuum Magnetic Surfaces (1'

4 N

* Typical Vacuum Magnetic - TP it naasnin sttt
¥ | | |
Configuration L I e e
| =096MA § T
o e e A
I, =084 MA Poaa N I B
L | | |
| | |
I _ O SOMA "'I.I X.0 14.9 iE.B 8.8
mw — Y. ; . averaged radios [(a] z 1t
|TB = 0.20MA 3 |B|:l.5T |B|=1.0T
- “ P 1.0 I I |
|, =1, =0MA A N e R e
A IS S A N
2 | |
A I PR B N
KMAG code ! ! |
0.0 | | |
« Averaged plasma minor S o wmeE e e
. averaged radius (m) x 10
radius = 0.1m - 0.2m

\ Poincare Plot &
/ |B| Contours




| Properties of Vacuum Magnetic Surfaces (2'
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Properties of Vacuum Magnetic Surfaces (3)

® Control of Toroidal Mirror Component of |B| by TF coils
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| MHD Equilibrium and Mercier Stability I

Flux Surfaces Flux Surfaces
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Structure of Magnetic Field Strength (1)

® Fourier Spectra of Magnetic Field
Strength in Boozer Coordinates

Dominant Fourier Components are ;
B oo
Bi14 ; helical component
Bio ; toroidal component (toroidicity)
B o4 ; toroidal mirror component
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Structure of Magnetic Field Strength (2)

° Fourier Spectra of Magnetic
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tends to *Linked Mirror”
configuration close to the
Quasi-Poloidal Symmetry




| Collisionless Particle Orbit (1) '
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— Trapped particles are located at the faborable positiol
where we can expect slow grad-B drift.




| Collisionless Particle Orbit (2) l

Time evolution of the loss rate of 1keV protons launced at

<r>fa = 0.5 flux surface with uniform distribution in space
and pitch angle (B, = 1T).
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These are consistent
with slow grad-B drift.
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| Neoclassical Transport (1) '

Neoclassical transport calculation by DKES code

Definitions for the calculation with monoenergetic distribution function

mean free path ;. L=nlv
half connection length , Le=pRy/i
nomalized mean free path ; L.=L/L,=1/n*

Simple estimation of diffusion coefficient in plateau regime ( (r/R,)%? < n<1)

Dplateau = (r 2V) / (i RO) r= (mV) / (eBO)
Diffusion coefficient calculated from DKES(monoenergetic) output G,

Dpkes = V(VBo/W,)?Gy4



| Neoclassical Transport (2) l

DKES code
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significant reduction can be
expected by the radial electric
field

neoclassical diffusion can be
reduced by bumpy field



l Concluding remarks '

0 There are a lot of studies to be done.

Ballooning stability

Global stability (free boundary)
Magnetic islands due to finite beta effect
Ambipolar neoclassical transport
Divertor study (island divertor?)

Plasma shaping by IV coils.

etc.

o Theoretical predictions have to be verified by experiments !!



FPresent Status of Heliotron-J

Heating, diagnostics systems and power supply are those of Heliotron-E.
Same site of Heliotron-E --> Heliotron-E will be removed.
We already made TF coils, IV coils, and Vacuum vessel.

TF coils (TA and TB coils)



Vacuum vessel and IV coils

Construction will be finished at the end of FY-99 (April, 99 - March, 2000).
----> first plasma can be expected at the beginning of 2000!



