
quasi-poloidal

We have recently explored QO-optimized systems which are nearer to
quasi-helical than our earlier configurations:

quasi-helical quasi-toroidal

Fall, 1997
8 field periods

August, 1998
3-4 field periods

• These are all realizable systems
– we have developed modular coils which reproduce closed flux surfaces

• Systems close to quasi-helical seem to allow improved QO-optimization at low field periods (2-4)

• These devices have iota in a higher range (0.6 to 0.9) than previous optimizations

• By QO-optimized we mean QO+other targets (stability, iota, compactness, etc.)

– i.e., the goal is to achieve good (but not necessarily perfect) confinement consistent with other physics
requirements

Note: These configurations have not yet been made self-consistent with bootstrap current profiles.  As recently calculated by Mike Zarnstorff,
configurations with B11 dominant have JBs  of opposite sign and larger than assumed here (needs di/dr < 0 to supress neoclassical tearing modes).

??





Excellent flux surface reconstruction is obtained using modular coils
generated by the COILOPT code:



Rotational transform and Mercier coefficient
profiles for Nfp = 3 and 4 configurations
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The Bmn spectra show that the helical component
is dominant.  The 1/R term is down from its axisymmetric

tokamak level about a factor of 4.

Nfp = 3, R0/<a> = 3.6

Note: For these cases, B0,0 ≈ 1

Nfp = 4 , R0/<a> = 4.2

Effectively a hybrid of W7-X and HSX: strong helical component
is like HSX, bumpy component is like W7-X



Energetic Collisionless OrbitEnergetic Collisionless Orbit
ConfinementConfinement

• ICRF tail populations
–ensemble of particles started out at B = Bres locations with ε/µ = Bres

(i.e., v||0 = 0)

•Beams
– particles born as beam ionizes on intersection with 3D flux surfaces

•Alpha -particles
– uniform distribution in v||0/v, θ,   ζ

• Two issues:
– losses due to localized regions of unclosed J* contours (all stellarators,
even W7-X, Helias, etc., we have studied have this to some extent)

– deviation of energetic particle guiding center orbits away from J*
contours (becomes larger proportional to ρ/<a>)



5 keV 20 keV 50 keV

Scaling with <a>/ρ of deeply Trapped proton orbit trajectories in a

B = 1T Nfp = 3 QOS Device (shown in Boozer coordinates):

J* surfaces GC Orbit

<a>/ρ = 27 <a>/ρ = 13.5 <a>/ρ = 8.5



Loss rates of 20 keV ICRF ion populations (500 particles) are
a sensitive function of the resonant magnetic field Bres = ε/µ

Nfp = 3 Nfp = 4
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ε/µ = 0.9 Τ ε/µ = 0.95 Τ ε/µ = 1.0 Τ

ε/µ = 1.05 Τ ε/µ = 1.1 Τ ε/µ = 1.15 Τ

Trapped particle J* contours (Nfp = 4) correlate with guiding center ICRF
loss regions.  (i.e., open J* contours - lost orbits - are only present in localized regions of phase space)

trapped/passing boundary passing J* contourspassing J* contours

trapped J* contours
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<B0> = 1 T

With increasing magnetic field, ρ/<a> gets smaller, reducing the orbit

spread about the associated J surface, leading to improved confinement
(shown here for  Nfp = 3).  Jim Lyon has indicated that 1.5 to 2 T may be possible in a

QOS at shorter pulse lengths.

<B0> = 1.5 T <B0> = 2 T
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The Nfp = 4 configuration shows a similar
confinement improvement with increasing B0
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Losses of ICRF populations have been calculated
for CHS (magnetic axis = 92 cm) in regimes where

heating was observed

0

0.2

0.4

0.6

0.8

1

0 0.0005 0.001 0.0015 0.002

F
ra

ct
io

n 
of

 r
em

ai
ni

ng
 p

ar
tic

le
s

time (seconds)

B
res

 = 1.3 T

B
res

 = 1.35 T

B
res

 = 1.4 T
B

res
 = 1.45 T

B
res

 = 1.5 T

0

0.2

0.4

0.6

0.8

1

0 2 10-5 4 10-5 6 10-5 8 10-5 0.0001

F
ra

ct
io

n 
of

 r
em

ai
ni

ng
 p

ar
tic

le
s

time (seconds)

Early time behavior



Confinement of heating populations in near term
devices can be more demanding than alpha

confinement in reactor-sized systems:

• 20 keV proton       B = 1T       <a> = 24 cm

ρ = 2 cm  <a>/ρ = 12

• 3.5 MeV alpha       B = 5T       <a> = 2 m

ρ = 5.4 cm  <a>/ρ = 37

• Prompt orbit losses are determined by:
– Closure of J* contours

– degree of adiabaticity - related to size of <a>/ ρ



Collisionless α-particle losses are calculated for a reactor-

scale version of the Nfp = 3 and 4 configurations (i.e., R0 = 10 m, B0

= 5 T, results are based on 500 α-particles per surface)

Note:

•These will be extended to
τSD ≈ 1 sec with collisional

effects

• This design has not yet
been fully optimized for a
reactor
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Collisionality scaling of the diffusivity for Nfp = 3
and 4 devices shows a decrease with ν

for n < 1014 cm-3

• Tfield = 1 keV, Etest = 2 keV,
Zeff = 1, (monoenergetic, 2000
particles)

• No ambipolar electric field

• Nfp = 3

– 0.006 < νeff/ωb < 0.115

– 34 < L* < 680

• Nfp = 4

– 0.004 < νeff/ωb < 0.08

– 42 < L* < 835

• where L* = λ/Lc,  Lc = πR0/ι,  λ
= mean free path, νeff = ν/εH, ωb

= bounce frequency
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The diffusivities and 0-D energy confinement time show a
strong dependence on electric field with

τE ≈ (2-3)×τISS95 for typical ambipolar potentials

•  Nfp = 4 configuration
•  4 monoenergetic ion Monte Carlo
groups used (2000 particles each) to
construct diffusiviites for a Maxwellian
• Tfield = 1 keV, Etest = 0.5, 1, 2, 3 keV,
n = 5×1013 cm-3, Zeff = 1

• Starting position: ψ/ψa = 0.25

             (r/a = 0.5)
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Ballooning growth rates can be a sensitive function of the pressure
profile and matching point position along the field line.  Note added: In
the past week Raul Sanchez has optimized the pressure profile for the 3

period device and gotten the β limit up to 3%
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A new method for fast ballooning growth rate calculation has
been developed for use in the optimization loop

Combining an initial matrix solution with a variational refinement allows very rapid
convergence of the ballooning growth rate (∝ h4)
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