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NESCOIL Improvement by Use of Null Space

Solutions
-Related to Control Matrix and Quality
Matrix Approaches
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A follow-on to Harry’s 12/2/99 presentation: “Update on
Control Matrix Studies”. '
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PRESENT NESCOIL

Seeks a solution to the problem:
Minimize ||LI — b||2. (1)

Solution is by SVD: L = UXVT, where matrices
L and U are N x N;, while ¥ and V are N x Ny

. = diag{o;} Isadiagonal matrix of “singular values”.

NESCOIL presently assumes the “solution”:
J]=L"b where LT=VI+tUT,
37 = diag{1/0;},
and 1/o; =0 if o0 < Ooutopy = 0.
(2)
In the following, assume N, singular values satisfy o; >

Teutof f -

The prescription defined in Eq. (2) for solv-
ing Eq. (1) is not unique. We can use this non-

uniqueness to the advantage of coil design.
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IMPROVED NESCOIL

Allen Boozer proposes

. Ny
I=I+ 3 Cj’l?j (3)

j=Ng+1

as a preferred solution to Eq. (1). The ¥ are the last
Ni — N, column vectors of the orthogonal matrix V.

Each 7; naturally satisfies
Lv; = 0. (4)

On account of Eq. (4), the “solution” expressed by
Eq. (3) using any chosen {c;} has the same residual (i.e.,

error) as the original NESCOIL solution:
LI -b=LI-b. (5)

Different {c¢;} will produce different contours of the cur-
rent potential. We can choose the particular set, {¢;},
that minimizes some engineering criteria such as coil com-
plexity and currrent density. If the residual is set at a
level such that the original NESCOIL current sheet re-
constructs the target plasma, the modified NESCOIL will
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also reconstruct. By construction, however, the coil set
will be “improved”.

Actually, Allen proposes to
Minimize |[W(LI — b)||2, (6)

where W is a weight matrix which is chosen to emphasize
those pieces of the cost function that are responsible for
the physics we really care about (quasisymmetry and sta-
bility), and to de-emphasize the remainder. The relation
of W to the so-called “Quality Matrix” is Q = WTW.
The solution of Eq. (6) depends on the SVD anaysis
of WL. Suppose, for a moment, that W is a diagonal
matrix and a small number of weights, Wj;, are large to
emphasize a few of the Vy equations:
Wii(LiiI; — b;) = 0. (7)
It is easy to see that the number of significant singular val-
ues (rank) of WL will equal the number of large weights.
The fewer the number of large weights, the smaller the

rank of WL and the larger the associated null space.
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The actual weight matrix we should use in Eq. (6) is
not diagonal. It is essentially the (square root of the) Hes-
sian calculated by our Control Matrix procedure: Recall,

from Harry, that
1
i = Gz + §Hz'jkzj3k (8)
describes the variation of selected physics parameters as
a target configuration shape is varied. Near an optimum
physics configuration, the Hessian tells us how rapidly
the physics varies away from the optimum. To convert

the Hessian into a quality matrix, we must first transform

from z-space to b-space using
z; =Ty, (9)
to obtain
pi = Gijb; + %ﬁijkbjbk. (10)

The Quality Matrix is obtained by a contraction of the
Hessian tensor, by defining the overall quality of the con-
figuration as a particular weighted combination of the
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physics parameters:
Objective Function = 3~ A;pi, (11)
, ]
just as the optimizer does. The QM is
Ai
Qjk = %ZEHijk- (12)

The “square root” of Q gives the desired weight matrix
W. We can expect that the rank of W is less than 1V,

implying more wiggle room for improving the coils.



DEC-B3-1999 1@:65 PPFL — THEORY DEPARTMENT BEA3 243 2662 P.AV-ES

Yet Another Approach

Just as we have seen that using thé null space of the
inductance matrix L should lead to improved coils for a
given target plasma shape, we can exploit another null
space to achieve a similar goal, namely the null space of
the control matrix G. Here, given a target shape, Zg we

construct null space vectors z, of G such that
Gz, =0. (13)

Thus, configurations with shapes defined by

New Shape = Zg+ TZ_: CnZn (14)
have the same physics as the target Zg. (r = Rank(G)).
However, since the shapes for different {c,} are differ-
ent, so too will be the NESCOIL current sheet solutions.
As before, we can choose the {c,} to minimize sum en-
gineering cost function, such as complexity and current

density.
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Square Root of a Matrix

Problem Statement: Given an N x N symmetric
matrix, Q, calculate an N x N symmetric matrix W
such that Q@ = WIW,

Solution: W is eigenmatrix of Q

To see this, consider the basic equations of SVD analysis:

W =UxVvV" (15)
Then
wWwT = (Uxzvh(vzTul,
= (WWHU = U(zxh. (16)
Similarly
(WIW)V = V(ZTE). (17)

Thus, the columns of U and V are eigenfunctions of
WW?T and WTW, respectively.
Also, Eq. (15) =
WV =UZX,
and WU =VXT (18)

8



DEC-89-1993 16:05 FPPL — THEORY DEPARTMENT 6E9 243 2662 P.E@9-89

Now, for the “square root” problem, since W is symmet-
ric, it follows that U and V are equal, and are simply

the eigenfunctions of WTW, which is simply Q. Then
the desired solution, W is given by Eq. (15).

TOTAL F.839



