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Outline

• Basic ∆’ calculations

• Scaling of ∆’ with rs (scaling q in 383)

• Saturated Island widths with neoclassical
term and error fields.

• Effect of neoclassical term on negative
shear islands (double tearing in TFTR).



Normalized current density is
fairly large for “383”

• J(r) normalized so that J(r)=1
on axis => q=1.

• Broken line shows parabolic
approximation to helical flux
function near rs.

• For larger islands, inward
shift has to be considered in
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Eigenfunction shape much
different than “vacuum”

• Current density is
relatively large near edge;
depresses eigenfunction.

• Shear is low in center;
overcomes low current to
peak eigenfunction.

• Together, cause
instability.

• J(r) => 0.5 J(r) gives
rs ∆’ = -2. 0.0 0.5 1.0 1.5
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“Constant-ψ” approximation means
renormalization of eigenfunction

• Renormalization
reduces ψ’ inside rs

• Renormalization
increases ψ’ outside rs

• “Constant- ψ” means
island saturates at
smaller size
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∆’ falls off rapidly with island width

• The drive from the
error field falls off
approximately as w-2.

• Island width scales
weakly with Berror
without neoclassical
term.

• The neoclassical term
is negative, increasing
linearly with width.
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Shallow minimum in rs ∆’ for rs

near 0.4 ap  (in “383”)

• For this data, kept J(r) the
same, but scaled q(r) to
move rs.

• Also shown is baseline
“395b” point - more
unstable that scaled
“383”.

• q(r) = 1.1 q(r) was
unphysical; “ideal limit”. 0
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Saturated island widths small,
even without neoclassical terms

• A 1 Gauss error can lead to
a substantial island.

• Island size scales roughly
w3 α error-Brad for small
islands with neoclassical
term.
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“395b” is not much better than
“383”

• For 2/1 island, rs ∆’ = 8.85 but saturated
island size 2.7%; with neoclassical 0.15%.

• The 3/2 mode, with rs = 0.82, calculation is
equivocal; the eigenfunction has a zero
crossing.

• Decreasing q by about 0.95 leads to normal,
strongly unstable mode.



Double tearing modes were
studied on TFTR

• The island is present in
negative shear region.

• Physics of double
tearing mode stability
(with other islands)
could be more
complicated than
assumed here.
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Island growth was simulated with ∆’
code, including neoclassical term

• Code needed bootstrap
current to match outer
island size.

• Even small bootstrap
current was strongly
stabilizing for inner
island.

• With neo-terms off,
matched inner island.
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Summary

• The 383 and 395b configurations are both
unstable to the 2/1 tearing mode.

• The island saturates at a relatively small size,
2-4%.

• Neclassical effects limit island size to <0.5%

• Small error fields can generate larger islands.


