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Questions

� Maximum QA transform

� Proximity of QA & QH

Outline

� Near Axis Expansion & QuasiSymmetry

� Ellipticity & Transform

� Simple Model
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How can we gain insight into QS?

� Near Axis Expansion

{ QuasiSymmetry very restrictive near axis

{ 1st order: ellipticity & transform

{ 2nd order: triangularity & shear

{ closely tied to axis parameters:

transform requires curvature & torsion
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Near Axis Expansion

� Near Axis Expansion � � p 
X = X0(`) + �X1�̂(`) + �Y1�̂(`)

B = Ba(`)(1 + ��X1+ : : :) (1)

κ̂

τ̂

Y1

X1b̂

� Frenet Equations: de�ne the axis

dX0

d` = b̂; �̂ = b̂� �̂

db̂
d` = �(`)�̂; d�̂

d` = ��(`)b̂� �(`)�̂ ; d�̂
d` = �(`)�̂
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1st Order QuasiSymmetry

B = Ba(1 + Æ cos �H + : : :) (2)

�H = � �N�
� poloidal, � toroidal magnetic angles

� On axis, Ba = const! � = 2�`=La
�H set to curvature direction

κ

τ

B minBmax
^

^

� Surfaces tied to curvature �X1 = Æ cos �H

� Ba = const! Flux=Area Conservation

Y1 = (
�
Æ)(sin �H + � cos �H)
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"Wobble" Function �
ellipses must "wobble" to keep �eld lines

straight in magnetic coords

� � rotates ellipses and raises ellipticity

� Stellarator Symmetry !
� = 0 in principle planes

� Ellipticity in principle planes E = (�=Æ)2

� � can't "turn over" ellipses

(maximum rotation 45o)

� Choosing Æ can make ellipses rotate relative

to curvature direction
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Transform

� Transform determined via Ricatti eq

d�
d� = 2

La
2��(�)(

Æ
�)

2 � �Hf1+ (
Æ
�)

4+ �(�)2g
where �H = ��N

� Periodicity condition �(0) = �(2�)!
unique eigenvalue �H for each �0

� Stellarator Symmetry ! �0 = 0

� Upper Bound (on magnitude)

�H = La
2�

R
�(Æ�)

2d�
R
1+(Æ�)

4d�=2
�

2
E�2+E2

1
2�

R
�d`

� Transform has maximum in ellipticity

�min < Æ < �max
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Simple Model for Axis

� wind axis on torus of circular x-section

cylindrical coordinates fR;�; Zg

R = 1+ a cosN�

Z = a sinN�

� Critical value a = 1=(N2+1)

� = 0 separates QA from QH

N = 3! acrit = 0:1
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Curvature & Torsion
(N = 3; a=acrit = 1=2;1;2)

� Curvature
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� �; a=acrit = 1=2; � = 0:52
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Transform (N=3 QAS)

� Transform rises quadratically in a
upper bound good for small a

� v. a for E0 = 2
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� QAS � rises linearly with N
Roughly �= N=6 @ a=acrit = 1=2 & E0 = 2

� v. N
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Transform (N=3 QAS)

� Has maximum in ellipticity

� v. E0
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� �0 = 0 gives best �
and preserves Stellarator Symmetry

� v. �0
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N=3 QAS

a=aCrit = 0:5, � = 0:52 , E ' 2:5
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QHS

Joe Talmadge kindly gave HSX axis

a=acrit � 2:5; �axis = 1:05; Eaxis = 2:36
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Summary

� Exact result on axis:

� = 0:5 achievable N = 3 QAS

� QAS & QHS similar when surfaces rotate

di�erence is a=acrit � 1=2;2

N = 3, Ra = 1:5m!
QAS a � 7:5cm, QHS a � 30cm

� Optimize from near axis surfaces

� Choose �1;n terms to mimick axis
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