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TOPICSTOPICS

• Improved Optimization Tools

• Status of Low-Bootstrap-Current 
〈β〉  ≈ 4%  QOS with d ι /dr > 0

• Higher-Bootstrap-Current 〈β〉  ~ 15%  

QO Configurations with d ι /dr < 0

• Plans



Tools Used in the Analysis of QO ConfigurationsTools Used in the Analysis of QO Configurations

• 3-D equilibrium: VMEC (red = targets currently in the optimizer)

• Stability
– COBRA (fast matrix/variational 3-D ballooning, R. Sanchez)
– Terpsichore - Kink instabilities (R. Sanchez)
– Resistive MHD for 3-D configurations (L. Garcia)

• Bootstrap Current
– Tolliver/Berry code (collisionless limit), NIFS multi-regime code
– Particle based δf calculation using DELTA5D

– DKES (Drift Kinetic Equation Solver)

• Transport, confinement
– DELTA5D (Stellarator Particle Simulation Code)
– DKES (Drift Kinetic Equation Solver)
– SYMPORBIT (symplectic orbit integrator)
– J*, J, Bmin, Bmax contour plotting

• Coil generation: COILOPT



Recent Target Enhancements to theRecent Target Enhancements to the
VMEC Physics Optimization CodeVMEC Physics Optimization Code

• COBRA ballooning code modified to run in VMEC
coordinates rather than Boozer coordinates:
speed improvement

• Low collisionality self-consistent bootstrap
current target

• J* confinement target upgraded to the more exact
J invariant

• DKES transport coefficient targeted at medium
collisionality (ν/v = 0.05) for a few surfaces

J* = dζ v∫ ||
, J = dl∫ v||( )



Initial J-invariant Optimization Leads to ~25%
Decrease in Global Thermal Energy Loss Rates
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Using a DKES High Using a DKES High CollisionalityCollisionality  ( (νν/v = 0.05) Target Leads/v = 0.05) Target Leads
to Improvements at Lowerto Improvements at Lower  Collisionality Collisionality  As Well As Well

0.1

1

10

100

0.001 0.01 0.1

L
11

ν/v (m-1)

with  DKES
optimization target

0.1

1

10

100

0.001 0.01 0.1

L
11

ν/v (m-1)

with  DKES
optimization target

2 field periods (A = 2.7) 3 field periods (A = 3.4)

eφ/kT = 0 eφ/kT = 0



Recent Configuration Studies Have Focused onRecent Configuration Studies Have Focused on
Two Distinct Types of QO DevicesTwo Distinct Types of QO Devices

• Low-I BS Configurations
– Bmn spectrum dominated by helically symmetric components
– High rotational transform (~ 0.6 to 0.8), stellarator-like shear
– Moderate ballooning < β> limit (3 - 4%)

– Low bootstrap current (1/10 of equivalent tokamak value);
opposite direction from tokamak

– Significant helical axis

• Higher-I BS Configurations
– Bmn spectrum dominated by poloidally symmetric components
– Lower rotational transform (~ 0.45 to 0.1), tokamak-like shear
– High ballooning < β> limits (up to 23%)

– Moderate bootstrap current (1/4 of equivalent tokamak value);
same direction as tokamak

– Moderate helical axis



Low Bootstrap CurrentLow Bootstrap Current

Configurations withConfigurations with

StellaratorStellarator  Shear Shear

((dd ιι /dr > 0)/dr > 0)



Progress Is Being Made in Different AreasProgress Is Being Made in Different Areas

• QOS physics studies are exploring different aspects
of low R/<a> QO configurations
–  Ballooning stability, thermal transport, energetic

ion confinement, bootstrap current

• Configuration optimization studies are examining
the best mix of features for a modest-size device

• Coil optimization studies are determining the best
modular coil set for the optimized configuration

• Engineering studies are exploring different issues
and approaches for a QOS device
–  coil and vacuum vessel construction, costing

• Physics optimization and systems studies are
exploring the extrapolation to an attractive reactor



Features  of  Low-IFeatures  of  Low-I BS BS  QO  Stellarators QO  Stellarators

• Stellarator-like shear , large helical component
–  typically ι (0) = 0.55-0.68, ι (a) = 0.74-0.87

• Bootstrap current ~1/10 current in a tokamak
–  configuration insensitive to increasing beta

• Ballooning stability limit 3-4%
–  magnetic well, Mercier stable out to plasma edge

colors indicate contours
of constant |B|



Low-ILow-I BSBS QO Configurations QO Configurations



The  Low-IThe  Low-I BSBS  QO-Optimized  Magnetic  QO-Optimized  Magnetic
Field  Has  Several  Spatial  ComponentsField  Has  Several  Spatial  Components

•  Dominant helical shaping term  produces higher rotational transform

•  Small axisymmetric 1/R term  reduces toroidal curvature drift

• Radially varying mirror “bumpy” term  produces poloidal grad-B drift

poloidally symmetric
“bumpy” field
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Bootstrap  Current  Contributes  ≈10%  of  the  NetBootstrap  Current  Contributes  ≈10%  of  the  Net
Transform  Based  on  Equilibrium  CalculationsTransform  Based  on  Equilibrium  Calculations
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Ballooning Stable at Ballooning Stable at 〈β〉〈β〉 = 4% = 4%

• Original low-IBS configuration, ballooning unstable at 〈β〉 = 3%,
was stabilized by small plasma boundary shape changes

• Pressure profile modification raises stable 〈β〉 to 4%
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Global Transport Energy Lifetimes Are NotGlobal Transport Energy Lifetimes Are Not
Dominated by Neoclassical LossesDominated by Neoclassical Losses

•  Potential profile: ion root sign, follows temperature profile

•  τ obtained from rate of ions escaping outer flux surface
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Configuration Not Yet Optimized for a ReactorConfiguration Not Yet Optimized for a Reactor
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• Alpha-particle losses are adequate for fusion power balance

• Impact points on wall compatible with divertor channel?



Monte  Carlo  Calculations  Used  to  AssessMonte  Carlo  Calculations  Used  to  Assess
Energetic  Ion  Losses  and  ICRF  HeatingEnergetic  Ion  Losses  and  ICRF  Heating

• Ions are started with v||0/v = 0
at intersections of |B|  = Bres

contours with flux surfaces

• Confinement of ICRF tail ions
was examined
– Loss rate was less than

for CHS in which ICRF
heating was successful

– QOS would use ICRF bulk
heating rather than
energetic ion tail heating

• Quasi-linear ICRF diffusion
heating/diffusion calculations
are being done to follow ions
as they increase in energy

flux
surface

resonant |B|
surfaces



Reference  QOS  PropertiesReference  QOS  Properties

• 3 field periods, R/<a> = 3.6; global magnetic well

• ι (0) = 0.56, ι (a) = 0.65 (monotonic)

• Good vacuum flux surfaces; little change with β

• Bootstrap current < 1/10 current in similar tokamak

• Shaped plasma surface gives ballooning 〈β〉  limit 3-4%

• Good neoclassical transport ( τE,neo ≈ 3-5 × τE
ISS95) from

3-D Monte Carlo loss rate calculation

• Confinement of ICRF-generated tails better than CHS

• 7 modular coils per period -- changing current in
corner coils ±50% changes R/<a> from 2.9 to 4.6



Transformation from Physics to EngineeringTransformation from Physics to Engineering

Scoping Study Parameters

• R0 = 1 m,   <a> = 28 cm
• B0 = 1 T,   tpulse  = 1 s





QOS  Modular Coils Allow ConfigurationQOS  Modular Coils Allow Configuration
Flexibility, Show RobustnessFlexibility, Show Robustness

Icorner  = 100%

50% 90%

150% 110%

φ = 0°

60°

•  ±50% change in corner coil current allows changing
    the plasma aspect ratio from 2.9 to 4.6 



Initial Examination of QOS  Modular CoilsInitial Examination of QOS  Modular Coils

Pulse Length Forces 
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Higher Bootstrap CurrentHigher Bootstrap Current

Configurations withConfigurations with

TokamakTokamak  Shear Shear

((dd ιι /dr < 0)/dr < 0)



Higher-IHigher-I BSBS  QO  Stellarator  Features  QO  Stellarator  Features

• Tokamak-like shear (d ι /dr < 0)
–  ι (0) ≈ 0.47 (q > 2) and ι (a) = 0.12 (q ≈ 8)

• Bootstrap current ≈1/4 that of equivalent tokamak
–  ≈40% of the edge transform comes from the coils

• Ballooning stable at 〈β〉  = 23%
–  smoother corners lead to high ballooning beta limits
–  stable to Mercier modes and internal kinks
–  smaller j and ∇ j near edge  ⇒   external kink limit >10%?

• Less helical axis excursion
–  simpler modular coils ⇒  easier fabrication, lower cost?

• More mirror-like |B| variation on a flux surface
–  larger plasma-coil separation possible? ⇒  smaller reactor

• Transport ~2x higher than best lower-I BS QO case,
but still ~1.6 better than ISS95 stellarator scaling



Comparison  of  QO  StellaratorsComparison  of  QO  Stellarators

colors indicate contours of constant |B|

low I BS higher I BS
ιext/ι
~0.4  

ιext/ι
~0.9  



Higher-IHigher-I BSBS QO Configurations QO Configurations



Plasma  Geometry  Is  Very  Different  for  thePlasma  Geometry  Is  Very  Different  for  the
Two  Types  of  QO  ConfigurationsTwo  Types  of  QO  Configurations

φ = 0° φ = 30° φ = 60°

Low-I BS , dι /dr > 0; large helical axis excursion, β ~ 4%

Higher-I BS , dι /dr  < 0; nearly planar axis, β ~ 15%

φ = 0˚ φ = 30˚ φ = 60˚



Magnetic Well Increases withMagnetic Well Increases with   ββ
〈β〉 = 0

〈β〉  = 23%



|B| Contours Close with Increasing|B| Contours Close with Increasing   ββ
〈β〉  = 0

〈β〉  = 23%



<β> = 23%

Flux |B|

At High  β |B| Surfaces Close and
Have Similar Shapes As Flux Surfaces



|B|  Structure  Is  Very  Different|B|  Structure  Is  Very  Different
for  the  Two  QO  Stellarator  Typesfor  the  Two  QO  Stellarator  Types

earlier near quasi-helical
〈β〉  = 2% QO case

newer near quasi-poloidal
〈β〉  = 14% QO case



|B| Contours for Higher-I|B| Contours for Higher-I BSBS Configurations Show a Significant Configurations Show a Significant
Improvement in Poloidal Symmetry with Increasing <Improvement in Poloidal Symmetry with Increasing < ββ>>

<β> = 0% <β> = 23%



The  Higher-IThe  Higher-I BSBS  QO-Optimized  Magnetic  QO-Optimized  Magnetic
Field  Has  Different  Spatial  ComponentsField  Has  Different  Spatial  Components

• Dominant poloidally-symmetric terms  >5 times larger

•  Small axisymmetric 1/R term  reduces toroidal curvature drift

• Helically-symmetric terms >20 times smaller

poloidally-symmetric
bumpy field terms

axisymmetric 1/R
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Variation ofVariation of  B Bmnmn  Spectra with Spectra with   <β><β>
Differs for Low- and Higher-IDiffers for Low- and Higher-I BSBS Configurations Configurations

Low-I BS QO Configuration
(at <β> = 2%)

High-I BS QO Configuration
(at <β> = 10%)



Variation ofVariation of  B Bmnmn Spectra with Spectra with   <β><β>
for Higher-Ifor Higher-I BSBS Configurations Configurations

<β> = 0%
<β> = 10%

<β> = 23%



〈β〉〈β〉  = 15%  QO  Configuration  Has  1/4  the = 15%  QO  Configuration  Has  1/4  the
Bootstrap  Current  of  Equivalent  TokamakBootstrap  Current  of  Equivalent  Tokamak

• QO case has self-consistent bootstrap current

• IBS 4x larger in an equivalent tokamak; large opposing
   driven current needed for self-consistent equilibrium

<j
.B

>

(r/a)2



Rotational  Transform  Profiles  Are  VeryRotational  Transform  Profiles  Are  Very
Different  for  the  Two  QO  TypesDifferent  for  the  Two  QO  Types
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Confinement Improves with IncreasingConfinement Improves with Increasing  ββ

• Low-IBS configurations factor ~2 better confinement
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Increasing Increasing ββ Leads to Improved Neoclassical Transport Leads to Improved Neoclassical Transport
and Decreased Bootstrap Current Coefficientand Decreased Bootstrap Current Coefficient

(results for 3 field period, A = 3.4 device)
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Low-I BS Configurations Higher-I BS Configurations

Monte Carlo Simulations Show that Higher-IMonte Carlo Simulations Show that Higher-I BSBS QO Devices QO Devices
Have Very Good Have Very Good αα-Particle Confinement with Increasing-Particle Confinement with Increasing   ββ



Coil Concepts for Higher-ICoil Concepts for Higher-I BSBS Configurations Configurations
Combine Modular and Saddle CoilsCombine Modular and Saddle Coils



Color contours show levels of

Bnormal error on last magnetic surface



PlansPlans
• Complete assessment of higher-IBS configuration

– kink stability and flux surface fragility at 〈β〉 > 10%
– confinement and stability from low β to high β

• Improve energetic and thermal ion confinement

• Improve coil configuration
– small saddle coils in corners for higher-IBS case
– look at finite cross section modular coils for higher-IBS case
– improve plasma-coil and coil-coil spacings for low-IBS case

• Assess low and higher IBS configurations as reactors

• Milestones
– 9/00 -- select candidate QOS plasma and coil configuration
– 9/00 -- complete initial preconceptual design concept
– 5/01 -- develop final plasma and coil configuration, pre-
                conceptual design, and cost estimate for QOS proposal



SUMMARYSUMMARY

• Progress has been made in application of tools
– 3-D equilibrium, stability, bootstrap current, transport, coils

• Progress has been made in optimization of the low-IBS

QO approach (R/<a> = 3.6)
– bootstrap current << current in tokamak for same size and ι
– good neoclassical transport (τE,neo ≈ 3-5 × τE,ISS95), ι ≈ 0.7

– ballooning stable at 〈β〉 ≈ 3-4%

• An engineering assessment has started
– Work focused on coil calculations

• Work has started on a higher-β QO configuration
– ballooning stable up to 〈β〉 ≈ 23%; kink stable at 〈β〉 ≈ 10%

– may allow simpler modular coils and smaller reactor

– neoclassical confinement still needs to be improved


