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TOPICS

* Improved Optimization Tools

* Status of Low-Bootstrap-Current
Bl=4% QOS with d t/dr > 0

* Higher-Bootstrap-Current [P~ 15%
QO Configurations withd 1/dr <0

* Plans



Tools Used In the Analysis of QO Configurations

3-D equilibrium: VMEC (red = targets currently in the optimizer)

Stability

— COBRA (fast matrix/variational 3-D ballooning, R. Sanchez)
— Terpsichore - Kink instabilities (R. Sanchez)

— Resistive MHD for 3-D configurations (L. Garcia)

Bootstrap Current

— Tolliver/Berry code (collisionless limit), NIFS multi-regime code
— Particle based df calculation using DELTASD

— DKES (Drift Kinetic Equation Solver)

Transport, confinement

— DELTASD (Stellarator Particle Simulation Code)
— DKES (Drift Kinetic Equation Solver)

— SYMPORBIT (symplectic orbit integrator)

— J* J, B.,in» Bihax CONtour plotting

min?

Coil generation: COILOPT



Recent Target Enhancements to the
VMEC Physics Optimization Code

COBRA ballooning code modified to run in VMEC
coordinates rather than Boozer coordinates:
speed improvement

Low collisionality self-consistent bootstrap
current target

J* confinement target upgraded to the more exact
J invariant (7 =ggzv. =g

DKES transport coefficient targeted at medium
collisionality (n/v = 0.05) for a few surfaces



Initial J-invariant Optimization Leads to ~25%
Decrease in Global Thermal Energy Loss Rates
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Using a DKES High Collisionality (v/v = 0.05) Target Leads
to Improvements at Lower Collisionality As Well

2 field periods (A = 2.7) 3 field periods (A = 3.4)
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Recent Configuration Studies Have Focused on
Two Distinct Types of QO Devices

* Low-l g5 Configurations
— B,,, spectrum dominated by helically symmetric components
— High rotational transform (~ 0.6 to 0.8), stellarator-like shear
— Moderate ballooning < (3> limit (3 - 4%)

— Low bootstrap current (1/10 of equivalent tokamak value);
opposite direction from tokamak

— Significant helical axis

* Higher-I g5 Configurations
— B,,, spectrum dominated by poloidally symmetric components
— Lower rotational transform (~ 0.45 to 0.1), tokamak-like shear
— High ballooning < > limits (up to 23%)
— Moderate bootstrap current (1/4 of equivalent tokamak value);
same direction as tokamak
— Moderate helical axis



Low Bootstrap Current
Configurations with

Stellarator Shear
(di/dr > 0)



Progress Is Being Made In Different Areas

* QOS physics studies are exploring different aspects
of low R/<a> QO configurations

— Ballooning stability, thermal transport, energetic
lon confinement, bootstrap current

* Configuration optimization studies are examining
the best mix of features for a modest-size device

* Coll optimization studies are determining the best
modular coil set for the optimized configuration

* Engineering studies are exploring different issues
and approaches for a QOS device
— coll and vacuum vessel construction, costing

* Physics optimization and systems studies are
exploring the extrapolation to an attractive reactor



Features of Low-l ;¢ QO Stellarators

* Stellarator-like shear , large helical component
— typically 1(0) = 0.55-0.68, 1(a) = 0.74-0.87

* Bootstrap current ~1/10 current in a tokamak
— configuration insensitive to increasing beta

* Ballooning stability limit 3-4%
— magnetic well, Mercier stable out to plasma edge

colors indicate contours
of constant |B|




Low-1 g QO Configurations
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The Low-l g QO-Optimized Magnetic
Field Has Several Spatial Components
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® Dominant helical shaping term produces higher rotational transform

® Small axisymmetric 1/R term reduces toroidal curvature drift

® Radially varying mirror “bumpy” term  produces poloidal grad-B drift



transform

Bootstrap Current Contributes
Transform Based on Equilibrium Calculations
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Ballooning Stable at &ih= 4%
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* Original low-lg5 configuration, ballooning unstable at &= 3%,
was stabilized by small plasma boundary shape changes

* Pressure profile modification raises stable &into 4%



Global Transport Energy Lifetimes Are Not
Dominated by Neoclassical Losses

* Potential profile: ion root sign, follows temperature profile
° t obtained from rate of ions escaping outer flux surface
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<E> lost (%)

Configuration Not Yet Optimized for a Reactor

* Alpha-particle losses are adequate for fusion power balance

* Impact points on wall compatible with divertor channel?
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Monte Carlo Calculations Used to Assess
Energetic lon Losses and ICRF Heating

* lons are started with v,,/v =0
at intersections of |[B| =B,
contours with flux surfaces surfaces

resonant |Bj

« Confinement of ICRF tail ions
was examined

— Loss rate was less than
for CHS in which ICRF
heating was successful

— QOS would use ICRF bulk
heating rather than
energetic ion tail heating

* Quasi-linear ICRF diffusion
heating/diffusion calculations surface
are being done to follow ions
as they increase in energy



Reference QOS Properties

3 field periods, R/<a> = 3.6; global magnetic well

1(0) = 0.56, 1(a) = 0.65 (monotonic)

Good vacuum flux surfaces; little change with B
Bootstrap current < 1/10 current in similar tokamak
Shaped plasma surface gives ballooning  [BUlimit 3-4%

Good neoclassical transport ( Tg g0 = 3-5 X 1°5%) from
3-D Monte Carlo loss rate calculation

Confinement of ICRF-generated tails better than CHS

7 modular coils per period -- changing current in
corner coils x50% changes R/<a> from 2.9 to 4.6



Transformation from Physics to Engineering

Scoping Study Parameters

°* Ry=1m, <a>=28cm
°* B,=1T, t =1s

pulse



QOS
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QOS Modular Colls Allow Configuration
Flexibility, Show Robustness

* +50% change in corner coil current allows changing
the plasma aspect ratio from 2.9 to 4.6
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Initial Examination of QOS Modular Colls

Pulse length , ESW (seconds)
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Higher Bootstrap Current
Configurations with

Tokamak Shear
(di/dr < Q)



Higher-l ;¢ QO Stellarator Features

Tokamak-like shear (d 1/dr < 0)
— 1(0)=0.47 (g>2)and 1(a) =0.12 (q = 8)

Bootstrap current =1/4 that of equivalent tokamak
— =40% of the edge transform comes from the coils

Ballooning stable at [Bl= 23%

— smoother corners lead to high ballooning beta limits
— stable to Mercier modes and internal kinks
— smaller jand 0[jnear edge [ external kink limit >10%?

Less helical axis excursion
— simpler modular coils [I easier fabrication, lower cost?

More mirror-like |B| variation on a flux surface
— larger plasma-coil separation possible? [1 smaller reactor

Transport ~2x higher than best lower-1 g5 QO case,
but still ~1.6 better than ISS95 stellarator scaling



Comparison of QO Stellarators

colors indicate contours of constant |B|



Higher-l . QO Configurations




Plasma Geometry Is Very Different for the
Two Types of QO Configurations

Low-1 55, dl/dr > 0; large helical axis excursion, 3 ~ 4%

@=30° @=60°

) Qe

Higher-I ;5 , dl/dr < O; nearly planar axis,




Magnetic Well Increases with [3
BC=0




|IB| Contours Close with Increasing 3
BO=0
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At High (3 |B| Surfaces Close and
Have Similar Shapes As Flux Surfaces

<B>=23% -




|IB| Structure Is Very Different
for the Two QO Stellarator Types

earlier near quasi-helical newer near quasi-poloidal
BL= 2% QO case [BL= 14% QO case

Theto
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The Higher-l ;c QO-Optimized Magnetic
Field Has Different Spatial Components
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® Dominant poloidally-symmetric terms  >5 times larger
® Small axisymmetric 1/R term reduces toroidal curvature drift

® Helically-symmetric terms >20 times smaller
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Variation of B, Spectra with <>
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Variation of B, Spectra with <(>
for Higher-1 g Configurations
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PBl=15% QO Configuration Has 1/4 the
Bootstrap Current of Equivalent Tokamak
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® QO case has self-consistent bootstrap current

® |5 4x larger in an equivalent tokamak; large opposing
driven current needed for self-consistent equilibrium



Rotational Transform Profiles Are Very
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Energy Confinement Time (msec)

Confinement Improves with Increasing b
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® Low-lgz5 configurations factor ~2 better confinement



Increasing [3 Leads to Improved Neoclassical Transport

and Decreased Bootstrap Current Coefficient
(results for 3 field period, A = 3.4 device)
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Monte Carlo Simulations Show that Higher-I g5 QO Devices
Have Very Good a-Particle Confinement with Increasing f3

Low-1 ;< Configurations Higher-I Configurations
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Colil Concepts for Higher-l g5 Configurations
Combine Modular and Saddle Coills
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Plans

Complete assessment of higher-lg5 configuration
— kink stability and flux surface fragility at é&fi> 10%
— confinement and stability from low b to high b

Improve energetic and thermal ion confinement

Improve coil configuration

— small saddle coils in corners for higher-l;5 case

— look at finite cross section modular coils for higher-l;5 case
— Improve plasma-coil and coil-coil spacings for low-I;5 case

Assess low and higher Iz configurations as reactors

Milestones

— 9/00 -- select candidate QOS plasma and coil configuration
— 9/00 -- complete initial preconceptual design concept

— 5/01 -- develop final plasma and coil configuration, pre-
conceptual design, and cost estimate for QOS proposal



SUMMARY

Progress has been made in application of tools
— 3-D equilibrium, stability, bootstrap current, transport, coils

Progress has been made in optimization of the low-lgg
QO approach (R/<a> = 3.6)

— bootstrap current << current in tokamak for same size and |

— good neoclassical transport (tg o, » 3-5° tg gges), 1 » 0.7

— ballooning stable at &f» 3-4%

An engineering assessment has started
— Work focused on coil calculations

Work has started on a higher-b QO configuration
— ballooning stable up to &fi» 23%; kink stable at doi» 10%

— may allow simpler modular coils and smaller reactor
— neoclassical confinement still needs to be improved



