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1. Improvement i Kink Stability of QAS Configurations
using Furth-Hartman Coils

e Improvement in the kink stability of QAS configurations has
been achieved by corrugating the plasma boundary with a low
M /N helical deformation localized to the outboard midplane

region of the plasma.
e The corrugated QAS preserves its quasisymmetry:.

e Tilted window-pane coils (“Furth-Hartman” coils) can produce
the surface corrugation. A simple estimate yields the require-
ment [py ~ 100k A — t (per pane). This estimate is supported
by NESCOIL calculations.



e A QAS configuration is calculated by VMEC =- plasma bound-
ary R(0, ), Z(0, ).
e Re-express the plasma boundary in terms of a quasi-polar radius

po(0, @) such that

R0, ¢) = Ry + pycost
Z(0,¢) = Zy+ pysin 6.
Then py(0, @), together with Ry and Z; defines the plasma
boundary:.
e Now corrugate the boundary by perturbing py:

R(0,¢) = Ro+ (po + p) cos 0
Z(0,¢) = Zy+ (po + p)sin 0,

~

where p(6, ¢) has the chosen form
p/po = Ae™ W cos (MO — No).

The parameters A, W, M, and N are varied and the stability of
the corrugated configuration is tested.
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Figure 1: QAS3-¢2: M =4, N=1,A=0.10,W =1.0
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Figure 2: QAS3-h3a: M =4, N =1, A=0.13,W = 1.0
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Figure 4: Comparison of iota profiles for QAS3-h3a corrugated and uncorrugated configurations. The primary

reason for stabilization is the change in shape, not in ¢ or the shear.
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Figure 5: Comparison of ModB along field line for corrugated and uncorrugated QAS3-g2 configurations. The

Quasi-symmetry is preserved at the level of corrugation amplitude required for stabilization.
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Figure 8: Comparison of ModB along field line for corrugated and uncorrugated QAS3-h3a configurations. The

Quasi-symmetry is preserved at the level of corrugation amplitude required for stabilization.
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We see that given a surface corrugation can be stabilizing for the
kink mode. The question is, what size coils (Furth-Hartman coils)

arc needed to produce a given corrugation.

e Analytic estimates based on a “straight stellarator” approxima-

tion have been given (see my presentation of 6/18/98):
p =3 Pmncos (mb —ng)
S (n— tgm) Py, sin (ml — no) = —.
i ( 01) P, ( ¢) B(Q)s

is relation of p to B? at the plasma surface.
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After expanding model currugation form of p and calculating
sheet current giving rise to B’ (making “straight stellarator”

approximation, obtain

; B AWBORT_]?Z%(% . L—O)e—(L—l)QW/Z/ZL
MTVE o oo K (N)IL(NE)

e For calculations, assume a minimum separation distance be-

tween the inner edge of the F-H coil and the plasma edge of
12cm (5em SOL 4 3.5¢cm Tiles/Liner + 3.5¢cm gap) and a max
coil current density of J = 3.0kA/em?. The calculations in-
dicate Ip_g ~ 100k A and are backed up by NESCOIL calcu-
lations where current potentials are compared (subtracted) for

corrugated and uncorrugated plasmas.
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Figure 11: Furth-Hartman coil current estimate for QAS3 configuration. A = 0.10,W = 1.0, N = 1, various M.
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Figure 12: Current potential for uncorrugated qas3-h3a configuration
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Figure 13: Current potential for corrugated qas3-h3a configuration
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2. 5VD for Improving the Current Potential Calculation
in NESCOIL

e NESCOIL seeks to calculate a sheet current distribution (on a
coil surface d¢ that encloses the plasma) which satisfies conti-

nuity of B-normal at the plasma edge
Biot - n = 0. <1)

B, is the total magnetic field, part of which is known (internal
plasma current contribution and external axisymmetric fields),
and part of which is unknown (the contribution of saddle coils).

)
1

e Let b; be the known normal field at a point on the plasma

boundary Then Eq. (1) can be re-written as
(Bsaddle ) ﬁ)z — bz

e The current potential for the sheet current is identical to a dipole
moment distribution m(6, ¢) corresponding to dipoles normal
to Jc.
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e If we wish to take into account forbidden regions for the place-
ment of coils, Allen Boozer has pointed out that approximating
m(6, ») by a discrete set of dipoles is appropriate.

e [f we ignore ports, etc, a more efficient procedure is to expand m
in Fourier modes (Merkel, Varenna Workshop Aug 1987, p25):

MN
m(0, ¢) = m:()%:— U,nsin(mb — no)

in which case Eq. (1) becomes

where

ka0, 0) = ;" fy " d0;dp ik (05, ¢5)sin(mb; — ng;),
_ pop3(R; - ri) (R - ry) Ry - R,
k<9]7¢]797¢) — 47_(_[ TZ5] o 7“?] ]

e Whether or not one is dealing with dipoles directly (see my pre-

sentation of 9/9/98). or the above Fourier method of NESCOIL,

a matrix equation of the type
2 Dwka — bz
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In NESCOIL, o is an index labelling a particular Fourier mode.
It there are IV, points on the plasma boundary and N, Fourier
coefficients of m(6, ¢), the matrix D has dimension N, x N,.

Assuming N, < N, a Least Squares solution can be sought.

e The original form of NESCOIL does not deal with the non-

square matrix, D, directly, and forms the “normal L-S" equa-

tions (from Eq. (2)), by premultiplying both sides of the matrix
2

equation by D?. This is equivalent to minimizing =;(B - fi)?.
The normal equations are ill-conditioned. Without regulariza-
tion, a “rat’s nest” is obtained if a large number of Fourier
modes are retained. Regularization (smoothing) is achieved by
throwing out high m,n Fourier modes. However this is at the
expense of accuracy (in satisfying the true boundary conditions

for B-normal at the plasma edge).

e We have confronted the regularization issue by solving the origi-
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nal (non-square) matrix equation by a Singular Value Decomposition
(SVD) of D, removing ill-conditioning of the pseudoinverse by

explicitly zeroing the small singular values.

e [n the 9/9/98 presentation, we showed promising results using
SVD applied to the pure dipole representation: For a 4-period
QAS, current potential solutions were obtained which were (a)
smoother than solutions obtained by NESCOIL, and (b) had
smaller Max and Mean errors. We also showed that for a 3-
period QQAS, smooth solutions were obtained for coil-to-plasma

separation distances that were greater than those achievable

with the old version of NESCOIL.

e Prashant Valanju has now incorporated the SVD method into
NESCOIL and repeated the improved behavior of the 4-field
period QAS test configuration.

23



