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Stellarator plasma confinement devices have no continuous symmetries, which makes the design of
appropriate coils far more subtle than for axisymmetric devices such as tokamaks. The modern
method for designing coils for stellarators was developed by Peter Merkel. Although his method
has yielded a number of successful stellarator designs, Merkel’s method has a systematic tendency
to give coils with a larger current than that required to produce a stellarator plasma with certain
properties. In addition, Merkel’s method does not naturally lead to a coil set with the flexibility to
produce a number of interesting plasma configurations. The issues of coil efficiency and flexibility
are addressed in this paper by a new method of optimizing the current potential, the first step in
Merkel’s method. The new method also allows the coil design to based based on a freer choice for
the plasma-coil separation and to be constrained so space is preserved for plasma access.

1. Introduction

A major advance in the design of stellarators was J. Niihrenberg’s concept of optimizing
stellarator configurations by varying the shape of the outermost surface of the plasma. Early
successes were stellarators with quasi-helical symmetry! and the design for the W7-X stellarator.2
The shape of the outermost surface is determined by the external coils, and the magnitude of the
magnetic field in the stellarator is set by the enclosed toroidal flux. The plasma equilibrium
equation, V p=]x B, implies B -V p=0, so the normal field on the plasma surface due to the set
of coils that is being designed must be equal and opposite to the normal field due to other coils,
such as toroidal field coils, and plasma currents. In this paper, the toroidal flux will be assumed to
be produced by a given set of toroidal field coils. The task is the design of an optimal set of
supplemental coils that cancel the normal component of the magnetic field on the plasma surface.
There are two optimizations: (1) the optimization of the stellarator configuration, which is carried
out by varying the plasma shape, and (2) the optimization of the coils to produce that
configuration.

The standard method to optimize the coils to produce a given stellarator configuration34 is
that of Peter Merkel. The first step is the determination of the current on a toroidal surface, the coil
surface, that approximates the desired location of the coils. The current on a given toroidal surface

is defined by a single function, the current potential (8,©), which is a function of the poloidal, 0,
and the toroidal, @, angles. The coil surface can be given in the form

X.(8,9) = R®,0) R(® + ZO,9) Z (1)

with (R,¢,Z) cylindrical coordinates. An example of a simple toroidal surface is R(0,9) =R, + a
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cosO and Z = a sin® with R, and a constants. The current density satisfies two constraints. It

must be divergence-free and must lie in the coil surface, j -V r =0 with r any well-behaved radial
coordinate such that 1 = 1., gives the coil surface. These two constraints imply the current density
has the form

j= — 8—r.) VixVK®,9), )

which defines the current potential k(8,¢). The current flows along constant- K contours because Iﬁ K
= 0. The Dirac delta function 8(r-r.) has the units of 1/r, so k has units of j times an area, which is
Amperes. The current potential is found in Merkel’s method by minimizing the mean-square of the
normal field, I(B' -fi)*da, on the desired plasma surface.3 The turns of the coil system are then

chosen to lie along constant-x contours. The change in k between contours, which has units of
Amperes, gives the required current in each coil turn.

This paper proposes a new method for optimizing the current potential. The new method
emphasizes the coil ﬂexibilitg for producing many desirable plasma configurations, the coil

efficiency (minimization of {j* ) and Ohmic losses), and the preservation of space free of coils for
plasma access (port space).

To make the distinctions clearer, Merkel’s method will be described using the notation of
the new method of optimizing the current potential. Merkel’s method relates two matrix vectors, a

flux vector @ and a current vector I, by an inductance matrix L. The normal magnetic field on the
plasma surface due to sources other than the coils being designed is given by the magnetic flux

vector, @. Let £:(0,6) be any complete set of dimensionless functions on the plasma surface. One

example of such a set of functions is the trigonometric functions; another is f; constant in a 6669
cell on the plasma surface and f;= 0 elsewhere. The ith component of the flux vector is

® = [ f(8,9B,da 3)
plasma : '
suface

with B, the field due to all other sources than the coils being designed. The current vector, I, on

the coil surface is defined using any general set of dimensionless functions, gi(6,0), on that
surface. The current potential is written as

k(6,0) = LI, 2,(6,9) 4)

with the components of the current vector Ij having units of Amperes. The Lj; component of the
inductance matrix L. is defined by

LijIj = J £.(0,0) Ej'dﬁ (5)
plusma
surface




with B ; the magnetic field produced by the current potential x = I;g;(8,¢) on the coil surface. (The

convention of an implied sum over a repeated index is not being followed; all sums will be
denoted explicidy.)

If the functions f;(8,¢) used to define the flux components, Eq. (3), are appropriately
orthogonalized, Merkel’s method for finding the current potential is equivalent to the minimization

of the error £ with
&= @~ @-LD. (6)

The superscript T denotes the transpose of a matrix, (Lij)T=Lji or the change of a column vector

into a row vector. The minimum of ¢ can be found by a number of techniques. These techniques
are equivalent to solving, as well as is possible,

L1=60, (7)

for the current 1.

Probably the best method for solving Equation (7), as well as is possible, is by the use of
Singular Value Decomposition (SVD) techniques. These techniques were recently introduced into

coil design by Neil Pomphrey. The SVD theorems says any real matrix can be written as
L=0-7-V7 (8)

with 7 a diagonal matrix with diagonal elements /4 and U and ¥V orthogonal matrices. (An
orthogonal matrix multiplied by its transpose is the unit matrix.) Equation (7) can then be rewritten

using the eigenvectors of the flux, @@= 1" -®, and the current, I”=V"T, as a large set of
equations, one for each component of the current,

(e)
o = 2o ®
i cﬂl
Multiplication by an orthogonal matrix does not change the magnitude of a vector, so the
magnitude of the current squared is

(I)@) 2
%),

(10)

ri- g

The fundamental problem in solving Equation (7) is that the inductance matrix can have very small
or zero diagonal elements /. For example, in a cylinder of height h the inductance for a field that

goes as cos(m®) is £, = MAWh (ry/r.)m with rp the plasma and re the coil radius. Since rpfe is less
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than one, /y, is very small when m >> 1. The components of the flux generally converge as |®;| <
A exp(-om) with A and o independent of m, so Equation (10) gives a finite current, only when the
plasma-coil separation is small, ro <rp exp(o).

The exact solution of L -I=®, Equation (7), often gives a very large, and typically infinite,
magnitude for the current. In the SVD method of solving Equation (7), only those components of
the current in Equation (9) are solved that are associated with a sufficiently large inductance 4 >

/in. If the inductances elements are arranged 50 4 > /min for i < iy and 4 </piy for i 2 iy, the
squared error in fitting the field is

=y (o) | (an)

In other words, no attempt is made to use currents in the coil surface to cancel the parts of the
normal magnetic field on the desired plasma surface that are associated with flux components @

with i 2i;. The more flux components that are canceled by coil currents the smaller /pin, the
smaller the error, but the larger the magnitude of the current. The SVD method finds the minimum
current magnitude required to achieve a given level of error.

What are the limitations of Merkel’s method for finding the current potential? Four
important limitations are: (1) Components of the flux may be ignored that are essential to
supporting the plasma. For example, flux components that resonate with the magnetic field lines
and destroy magnetic surfaces in the plasma need to be retained even when their inductance
coefficients are small. In the jargon of the field, missing components of the flux can lead to a poor
reconstruction. (2) Components of the flux may be retained that are inessential to supporting the
plasma. As the cylindrical problem illustrates, the highest mode number retained in the calculation
will dominate the magnitude of the current if the coil surface is sufficiently displaced from the
plasma. The retention of inessential components of the flux leads to inefficient coils and fictitious
limits on the maximum tolerable separation between the coils and the plasma. (3) No concession
is made to flexibility. The optimal current potential is found for one plasma configuration. Any
flexibility is accidental that arises from varying the currents between the turns of the single coil set
that is derived from such a current potential. (4) There is no constraint in the method, as normally

applied, to reserve space for ports.

The four limitations of Merkel’s method are addressed by the new method for finding the
current potential. The new method optimizes the efficiency of the coil set by retaining all flux
components that are essential to supporting a desirable plasma configuration but no more. The
new method gives a current potential that depends independently on the components of the flux that
must be controlled, which naturally gives a flexible coil set. Space can be reserved for ports, and
the impact of port space on the efficiency and the flexibility of the coils can be studied.

1. New Method for Optimizing the Current Potential

The method that is being proposed for finding the optimal current potential differs strongly




from the old. For example, only the important components of the flux vector, ®, are retained--far
fewer than the number of components of the current vector, I, that is being considered. This

means the desired flux vector, &, can be produced exactly by a non-unique current vector,1. The

freedom in the current vector is used to minimize the power dissipation in the coils that are being
designed. In other words, the freedom in the current vector allows a minimization of the current
density. At the end of the analysis, the number of independent current components is equal to the
number of components of the flux vector that must be controlled. The analysis gives the current
potential that most efficiently (minimal Ohmic dissipation in the coils) balances a given set of
fluxes. :

The new method for optimizing the current potential uses two matrices that play no role in
Merkel’s method. These are the quality matrix Q and the resistance matrix R.

The importance of the various components of the flux vector & is measured by the quality

matrix O. Niihrenberg’s method! for finding stellarator configurations is an optimization of a
target function which contains information on the magnetohydrodynamic and the neoclassical
transport properties of the configuration. The target function is optimized by varying the Fourier
coefficients in the shape of the outermost surface of the plasma. Once an optimum is obtained, one
can find how the target function, or the quality of the configuration, is degraded by changes in the

Fourier coefficients, or equivalently by displacements normal to the plasma surface, & -fi. (A
tangential displacement gives a change in the parameterizaton of the plasma surface, not a new
surface shape.) Except on a rational magnetic surface, the magnetic perturbation b associated with

a displacement E is given6 by b= 6’ X (E « B). This relation between the perturbed field and the
displacement can be used to show that the perturbed flux is ~

&-11= [ f.0.,¢)b-di=- [ B-V)E-da. (12)
plasma plasma
surface surfuce

The target function for the stellarator configuration should deviate from its optimum value T, with

roughly a quadratic dependence on the normal displacement E -fi. Consequently, the target
function depends on the perturbed flux as

T=T, —(®-L-DH"-0-(d-LD, (13)

which defines the quality matrix ). A set of desired plasma shapes can only be reproduced by
the coils to a certain tolerance. The quality matrix is like a metric tensor defining how far a set of
coils miss reproducing a given target plasma.

The quality matrix, Q.isa symmetric, positive matrix and can be diagonalized. A diagonal
element is important if it satisfies either one or both of the following criteria: (1) The diagonal

matrix element q; is large. (2) The component of flux @; associated with the component is large.




6

The potential degradation in quality associated with the ith clement of the diagonalized guality

matrix is 8Q = qi®;2. The maintenance of a given quality tolerance on the target function of the
stellarator configuration defines which components of the flux are important and which are not.
Let Ng be the number of important components of flux. The irrelevant components of the flux are

ignored in the remainder of this section.

The efficiency of the coil set is optimized by reducing the Ohmic power that is dissipated in
the coils,

p=T1RT, (14)

to a minimum. The method for calculating resistance matrix R is given in Section IIT. The
resistance matrix is symmetric and positive definite. As shown in Section III, it can be used to
impose the constraint that certain space on the coil winding surface must be free of coils in order to
allow room for ports.

The number of components of the current vector I, which is denoted by Ny, is assumed to
be very large compared to the number of flux components that must be fit, No. To satisfy the

constraint that the N, components of the flux that must be fit are fit, the equation ® = L.-T must be

solvable with @ the important part of the flux. The equation ® =1-1 can be solved by

diagonalizing the matrix [.7-T.. Tf the T can indeed satisfy the required equation & = L1 then
the matrix I." . will have precisely No non-zero eigenvalues, /; , the number of important fluxes.
In other words, the matrix I." - has Ng eigenvectors |s ) associated with non-zero eigenvalues
and Ny - Ng eigenvectors [n) associated with zero eigenvalues. The eigenvectors |n) are said to
span the null space of L.7-I.. The current can be written in the form

N -N
®

IE I |n) (15)

1= flﬁ sy +

with the I, determined by the equation ® = L-T and the 1, arbitrary. In other words, the Ng
currents I, can be chosen to reproduce the N, fluxes exactly with the currents I, totally
unconstrained. The arbitrary components of the current I are then chosen to minimize the Ohmic
power, That minimization yields

(16)

with R = ¢{n'|R|n) and {n| the transpose of the eigenvector [n). Since the resistance matrix is

positive definite (has no null space for non-zcro 7). one can solve Equation (16) to find the I, in the
form




N
I, =- Ylc, (17)
s=1

with ¢, a matrix of constants. The current that exactly reproduces Ng fluxes with minimal Ohmic
power is
N[—N@

T= ‘zlls [|S> - X}l Csn|n> * (18)

The new method of finding the current potential defines a set of Ng, independent currents
that exactly control Ng flux components. If one assumes the important N ¢ components of the flux
are similar for a set of stellarator configurations, then the set of Ng currents is sufficiently flexible

to produce all the configurations in the set. Why might one expect this to be the case? The
important flux components associated with different eigenvalues of the quality matrix affect the
target function differently, so one would assume that at least that many flux components must be
controlled. The most important flux components are presumably associated with either low or
resonant Fourier harmonics of the normal magnetic field. By low Fourier harmonics is meant
poloidal harmonics m=0,1,2,3 and low toroidal harmonics of the number of periods of the
stellarator. This is analogous to saying the properties of a tokamak plasma are largely determined
by the aspect ratio, the ellipticity, and the triangularity. In any case, a study of a number of
interesting plasma equilibria will establish which set of flux components must be controlled by the
coils being designed and which flux components, if any, are consistent with a fixed current
potential over an interesting range of plasma configurations. ‘

III. The Resistance Matrix

The resistance matrix R is defined so the Ohmic power dissipated by the coils
P = Jnj*d’x. (19)

. T o . .
can be written as P = T R 1. The current density is given in terms of the current potential by
Equation (2) and the current potential is expressed in terms of the current components I by

Equation (4). The theory of general coordinates implies

. = ox X -
erVK;-lm °8—K—a°%. (20)
J | dp 20 30 3

with Xc(ﬁ,q)) the equation for the coil surface, Eq. (1), and J the Jacobian of (r,0,¢) coordinates.

Although the current carrying region can be arbitrarily thin--so for most purposes it can be
viewed as a surface, a finite resistance matrix implies the thickness cannot be zero. The volume of

the current carrying region associated with a small change in 0 and ¢ will be denoted by




v(8,0)805¢. That is

Jd3x
v(8,0)

= 80 8¢ = [ d(r~r,)drd05¢. 21)

Using d3x =4 dr 66 8¢, one finds that

1 -
I (22)
The Ohmic power can then be written as

pofn {{axc]z [95]2_ z[axc AR \ox ok [axc ]2

30 | |8 38 dp |3 e |30

JK

elo

}ded(p. (23)

The current potential ¥ can be written as k(0,9) = X. I, g,(0,¢) with g;(6,¢) any general

set of dimensionless functions, Equation (4). Equation (23) implies the components of the
resistance matrix are

v

Rijszl{

o%.\" g, 9z, (9%, X, )(dg dg, 9g, dg,) {9X.) g g,
- . + + dedo,
do | 00 06 0 do [BG e e 10) 89] 98 | do Jd¢

(24)
and the Ohmic dissipation is P = YiR;l;.

The constraint that there be no coils in a region occupied by a port is imposed by making
the g;(6,0) constant in any region that is to be occupied by ports or by making n/v very large.

IV. Summary

The scientific usefulness of a stellarator experiment is largely determined by the flexibility
of its coils to produce a number of important plasma configurations and the access if offers for
heating and diagnostics. The cost and technical limitations of an experiment are largely determined
by the efficiency with which the required magnetic fields can be produced. In this paper a new
method of finding the current potential is given which can serve as the basis for designing coils
that optimize flexibility, efficiency, and access.

Stellarators are designed by maximizing a target function through variations in the shape of
the plasma. The target function defines how far a particular stellarator configuration is from the

optimum. The matrix that measures this distance is the quality matrix Q, which is a positive
symmetric matrix like a metric tensor in ordinary space. The coils that are being designed cancel
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the normal magnetic field on the plasma surface due to all other sources. The eigenvectors and

cigenvalues of Q determine which parts of the normal magnetic ficld must be carcfully canceled
and which can be ignored. The current distribution on the coil surface is chosen to cancel the
important parts of the normal magnetic field. This does not uniquely determine the current
distribution since there are only a finite number of such parts of the field. The current distribution
is made unique by maximizing the efficiency (minimizing the required Ohmic power) and
constraining the current 10 be zero in regions to be occupied by ports. Since each non-degenerate
eigenvector of the quality matrix engenders a different response by the target function, it is
expected that the important eigenfunctions must be independently controllable by the coils that are
being designed to have a flexible coil set. The most critical parts of the normal magnetic field to
conirol are presumably related to simple features of the plasma cross section (like aspect ratio,
ellipticity, or triangularity) or to resonances that can destroy the magnetic surfaces in the plasma.

The method that has been used until now to optimize the current distribution in the coil
surface forces the coils to cancel unimportant parts of the normal magnetic field on the plasma

surface which (1) needlessly increases the current that is required to support the plasma and (2)
reduces the maximum acceptable separation between the coils and the plasma. It is preferable to
have the coils far from the plasma for two reasons (1) to provide space for freedom in the plasma
shape and (2) to simplify the coils. The tolerable space between turns of a coil set is less than the
distance from the coils to the plasma; the further back the coils the fewer the turns that are required
to obtain a good representation of a continuous distribution of surface current.

The concepts that have been introduced in this paper give a definite procedure for designing
coils that are flexible, efficient, and have good plasma access. These are the most critical [eatures

of the coils of an attractive experiment.
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