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In the Physics Meeting talks Neil and I gave
on 12/2 and 12/16, we provided updates on
what our Control Matrix (CM) studies have
found so far, touching on where we plan to
go from here. In our talks here, we will dis-
cuss the CM project with a somewhat dif-
ferent emphasis, summarizing the results of
the earlier talks, and addressing how these
will help provide improved design tools for
NCSX.



ÆFormulation:

ÆCon�guration space:
�`Full-space' X of amplitudes
X � fXj=1;::Nxg � (Rn1

; Zn1 ; Rn2
; :::ZnNx=2)

needed for (e.g.) a VMEC equilibrium speci�cation
of the boundary. Here, n � (~n � n=Nfp;m), and
Nx � 70.
�`Reduced-space' Z of combinations of those Xj which
capture the most important physics:
Z � fZj=1;::Nzg, where N � Nz � Nx.

ÆOver X or Z, consider the behavior of M �Mp � 5
physics �gures of merit
P � fPi(Z)g = (�21; �

2
2;W1;W2; �).

�Expand P(Z = Z0 + z) = P(Z0) + p about Z =
Z0. (In component-form, summation over repeated
indices assumed):

pi(Z0+ z) = Cij(Z0)zj +
1

2
Hijk(Z0)zjzk + (h.o.): (1)

For small enough z, one has

p = C0 � z; (2)

withC0 � C(Z0) theM�N `control matrix' at design
point Z0. It may be inverted, using SVD.



�Taking the particular basis set �i=1;M which have
1 in the ith position and 0 elsewhere, have set �i of
displacements

�i � C�10 � �i;

physically representing a set of displacements which
vary a single physics parameter Pi, leaving the oth-
ers unchanged. These span the `range' of C. The
(N �M) vectors vi=M+1;N spanning the nullspace of
C (change the con�guration without modifying any
of the Pi) also important for design exibility.



ÆSummary of results of CM studies so far:

ÆEstablished and tested machinery for application of
CM analysis, mostly independent of particular Z-space
specialization.

ÆExamined topography of Z-space, both locally in the
vicinity of design points Z0, and globally, on trajec-
tories between di�erent Z0. Most attention focussed
on C10, but C82 and PG1 also examined.

ÆFound that the variation of the Pi is rather smooth
and unstructured, even over distances in Z gener-
ally considered large. In an appreciable neighborhood
of C10 (�Zj � 1cm) the Pi may be modeled by a
quadratic function of z = Z� Z0.
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ÆExplicitly constructed this quadratic representation
about C10 for a reduced set (Nz = 8) of perpendicular
displacements of the C10 boundary, computing both
the 1st and 2nd order coefs Cij and Hessian Hijk for
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Pi look similar, and these di�er from the kink{associated
one P5. The former have small m and a range of ~n,
while the P5 set have ~n � 1 or 2 and a range of m.

ÆApplying the CM formalism locally (near C10), nu-
merically demonstrated that the mathematically{computed
deformations �i which vary a single Pi and the null-
space basis vi which vary none of the Pi (yet do pro-
duce a di�erent con�guration) do in fact have the de-
sired e�ect.
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ÆThe 4 QA-associated Pi produce boundary displace-
ments �i(�; �) similar in appearance, and di�erent
from the kink{associated one P5.



ÆFor C10, �5 manifests the outboard indentation at
~� � Nfp� = � previously noted by Long-Poe and Neil
to stabilize the kink, enhancing C10's negative trian-
gularity at ~� = �.
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However, this behavior is not generic: for PG1, �5 en-
hances its positive triangularity, consistent with toka-
mak intuition on kink stabilization.



ÆFor C10, outboard indentation at ~� = � is not enough
to help kink stability. E.g., null vector v8 also causes
such indentation, but has a di�erent �-dependence.
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ÆImplications for plasma con�guration:

ÆOur topographic �ndings suggest that, as for the Pi,
there also might not be many hills and valleys in the
objective function F (P). This needs to be squared
with what the optimizer is doing. Long-Poe Ku and
Chuck Kessel are working with us on the optimizer
side, conducting experiments with the optimizer to
help us better understand the relationship between
the CM topography �ndings and the optimizer re-
sults.

ÆThe smooth topography also raises the possibility of
using an MC code to provide a real transport Pi.
ÆThe CM machinery is giving us boundary deforma-
tions which a�ect given Pi. Further physical inter-
pretation of these should improve our intuition about
how to make deformations that do what we want.

ÆImplications for operational exibility, startup,
& coil design:

ÆUse of Hijk in weighting matrixW in QM approach
(see Neil's talk).
ÆAs in my 12/2 talk, the same CM analysis can be ap-
plied with a new specialization of the Z from bound-
ary amplitudes X to coil current amplitudes I, and
using free{ instead of �xed{boundary VMEC:



ÆWith specialization Z ! I � fIj=1;::Nzg describing
the external currents: One may choose
(a)Ii ! Kni � the Fourier amplitudes of the current
potential K(�; �) (for coil design), or
(b)Ii ! Ji � the amount of current in the ith coil of
a given coil set (for operational exibility).

ÆThen the Pi(Z) can be computed almost as now, but
using free-boundary VMEC.

ÆSometimes useful to extend the Zj, Pi:
�Extend the Zj to include Z� � h�i, (and maybe a
parameter characterizing the peakedness of the pres-
sure pro�le), and
�Extend the Pi to include P6, = current{sheet com-
plexity measure like that which Steve H developed
last year.

ÆThen applying the CM method just as earlier:
��6 gives current{sheet changes which reduce the coil
complexity, while keeping the physics performance
unchanged.
�Including h�i, the relative size of components of h�i
to the other Zj tell what changes need to be made as
h�i is raised to maintain physics performance.


