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The M3D code is capable of using a 3D mesh, suitable for stel-

larator studies. Simulations can be initialized with Vmec equilib-

rium data. M3D is run with resistive dissipation, as well as cross

field thermal conduction. Parallel thermal conduction is simulated

with the “artificial sound” method.

M3D can be run with a coarse grain parallelization, with poloidal

planes of data assigned to different processors. The following equi-

librium was calculated with an Origin 2000 shared memory multi-

processor computer.

Initialization of M3D from VMEC

Vmec provides a parametrization of magnetic surfaces

R(s, θ, φ), Z(s, θ, φ)

which is used to construct the M3D grid, shown in the figures

below. The Vmec magnetic field data is interpolated onto the

M3D mesh, and the toroidal current and magnetic field are found.

Along with the pressure profile, this is sufficient to initialize M3D.
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Relaxation of M3D Equilibrium from VMEC

The artificial sound method solves

∂p

∂t
= −v · ∇p− (γ − 1)p∇ · v +∇‖va‖

∂va‖
∂t

= − 1

τa
va‖ + c2

a∇‖p

to relax towards a state with

∇‖p = 0.

Source terms Jφ0, p0 : are included to maintain the toroidal

current and pressure.

Eφ + (v ×B)φ = η(Jφ − Jφ0)

∂p

∂t
= . . . +∇ · κ∇(p− p0)

Kinetic energy is removed by viscous damping.

Simulations were done with 2000 − 5000 poloidal meshpoints,

and 20− 36 toroidal meshpoints, using an 8 processor SGI Origin

2000 computer at NYU, as well as on workstations. Better reso-

lution, with larger grids, will be obtained by running on a large

O2000 shared memory computer at Princeton University. High

resolution will be achieved with parMHD, a massively parallel im-

plementation.
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(a) (b)

Figure 1: The computational mesh has about 4 times as many points as in these figures. (a) mesh in
poloidal plane φ = 0. (b) mesh in poloidal plane φ = π/6.

(a) (b)

Figure 2: (a) mesh in poloidal plane φ = π/3. (b) toroidal mesh
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Figure 1: C-82



(a) (b)

Figure 2: Contours of toroidal current at φ = 0, for (a)t = 0, (b) t = 45.13



(a) (b)

Figure 3: Contours of pressure at φ = 0, for (a)t = 0, (b) t = 45.13



(a) (b)

Figure 4: Poincare plot at t = 0, 45.13.



(a) (b)

Figure 5: Poincare plot at t = 0, 45.13.



(a) (b)

Figure 1: Contours of (a) toroidal current and (b) pressure at φ = 0, t = 30.27 .



(a) (b)

Figure 2: Poincare plot at t = 30.27.
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Figure 1: LHD



(a) (b)

Figure 2: Contours of pressure at φ = 0, (a) t = 0, (b) t = 6 .24



(a) (b)

Figure 3: Poincare plot at t = 0, 6 .24.
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Figure 1: W7



(a) (b)

Figure 2: Contours of (a) toroidal current and (b) pressure at φ = 0, t = 7 .35.



(a) (b)

Figure 3: Poincare plot at t = 7 .35.


