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TOPICS

* Status of Low-Bootstrap-Current
ain» 4% QOS with di/dr >0

* Higher-Bootstrap-Current &n~ 15%
QO Configurations with di/dr <0

* Plans



Features of Low-lgc QO Stellarators

e Stellarator-like shear , large helical component
— typically i(0) = 0.55-0.68, i(a) = 0.74-0.87

* Bootstrap current ~1/10 current in a tokamak
— configuration insensitive to increasing beta

* Ballooning stability limit 3-4%
— magnetic well, Mercier stable out to plasma edge

colors indicate contours
of constant |B|




Progress Is Being Made in Different Areas

* QOS physics studies are exploring different aspects
of low R/<a> QO configurations

— Ballooning stability, thermal transport, energetic
lon confinement, bootstrap current

* Configuration optimization studies are examining
the best mix of features for a modest-size device

* Colil optimization studies are determining the best
modular colil set for the optimized configuration

* Engineering studies are exploring different issues
and approaches for a QOS device

— colil and vacuum vessel construction, costing

* Physics optimization and systems studies are
exploring the extrapolation to an attractive reactor



The Low-lzc QO-Optimized Magnetic
Field Has Several Spatial Components
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® Dominant helical shaping term produces higher rotational transform
® Small axisymmetric 1/R term reduces toroidal curvature drift

® Radially varying mirror “bumpy” term produces poloidal grad-B drift



Bootstrap Current Contributes »10% of the Net
Transform Based on Equilibrium Calculations
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Ballooning Stable at &ih= 4%
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* Original low-lg5 configuration, ballooning unstable at &= 3%,
was stabilized by small plasma boundary shape changes

* Pressure profile modification raises stable &into 4%



Global Transport Energy Lifetimes Are Not
Dominated by Neoclassical Losses

* Potential profile: ion root sign, follows temperature profile
* t obtained from rate of ions escaping outer flux surface
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<E> lost (%)

Configuration Not Yet Optimized for a Reactor

* Alpha-particle losses are adequate for fusion power balance

* Impact points on wall compatible with divertor channel?
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Monte Carlo Calculations Used to Assess
Energetic lon Losses and ICRF Heating

lons are started with v,,/v =0
at intersections of |B| =B,
contours with flux surfaces

Confinement of ICRF tail ions
was examined
— Loss rate was less than
for CHS in which ICRF
heating was successful

— QOS would use ICRF bulk
heating rather than
energetic ion tail heating

Quasi-linear ICRF diffusion
heating/diffusion calculations
are being done to follow ions
as they increase in energy

resonant |B|
surfaces

flux
surface



Reference QOS Properties

3 field periods, R/<a> = 3.6; global magnetic well

1(0) =0.56, i(a) = 0.65 (monotonic)

Good vacuum flux surfaces; little change with b
Bootstrap current < 1/10 current in similar tokamak
Shaped plasma surface gives ballooning adbnlimit 3-4%

Good neoclassical transport (tg o, » 3-5 7 t£53%) from
3-D Monte Carlo loss rate calculation

Confinement of ICRF-generated tails better than CHS

7 modular coils per period -- changing current in
corner coils £50% changes R/<a> from 2.9t0 4.6



Transformation from Physics to Engineering

Scoping Study Parameters

°* Rp=1Im, <a>=28cm
°* Bp=1T, t =1s

pulse



QOS

Quasi-Omnigeneous Stellarator

A Compact, Low Current Fusion Experiment
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Initial Examination of QOS Modular Colls
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QOS Modular Colls Allow Configuration
Flexibility, Show Robustness

+50% change in corner coil current allows changing
the plasma aspect ratio from 2.9to 4.6
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Higher Bootstrap Current
Configurations with

Tokamak Shear
(di/dr < 0)




Higher-l;g QO Stellarator Features

Tokamak-like shear (di/dr < 0)
— i1(0)» 047 (qg>2)andi(a) =0.12 (g » 8)

Bootstrap current »1/4 that of equivalent tokamak
— »40% of the edge transform comes from the coils

Ballooning stable at &= 23%

— smoother corners lead to high ballooning beta limits
— stable to Mercier modes and internal kinks
— smaller j and Nj near edge b external kink limit >10%?

Less helical axis excursion
— simpler modular coils b easier fabrication, lower cost?

More mirror-like |B| variation on a flux surface
— larger plasma-coil separation possible? b smaller reactor

Transport ~2x higher than best lower-l;5 QO case,
but still ~1.6 better than 1SS95 stellarator scaling



Comparison of QO Stellarators
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Plasma Geometry Is Very Different for the
Two Types of QO Configurations

Low-lgs , di/dr > 0; large helical axis excursion, b ~ 4%
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Rotational Transform Profiles Are Very
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The Higher-lz;¢ QO-Optimized Magnetic
Field Has Different Spatial Components
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® Dominant poloidally-symmetric terms >5 times larger
® Small axisymmetric 1/R term reduces toroidal curvature drift

® Helically-symmetric terms >20 times smaller



|IB| Structure Is Very Different
for the Two QO Stellarator Types

earlier near quasi-helical newer near quasi-poloidal
&in= 2% QO case &= 14% QO case

Theto




dn=15% QO Configuration Has 1/4 the
Bootstrap Current of Equivalent Tokamak
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® QO case has self-consistent bootstrap current

® |Iz5 4x larger in an equivalent tokamak; large opposing
driven current needed for self-consistent equilibrium



Magnetic Well Increases with b




|IB| Contours Close with Increasing b
2fi= 0




Energy Confinement Time (msec)

Confinement Improves with Increasing b
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® Low-lgz5 configurations factor ~2 better confinement



a Confinement Improves with Increasing b
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® Low-lgz5 configurations have better confinement at low b
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Plans

Milestones

— 9/00 -- select candidate QOS plasma and coil configuration
— 9/00 -- complete initial preconceptual design concept

— 5/01 -- develop final plasma and coil configuration, pre-
conceptual design, and cost estimate for QOS proposal

Complete assessment of higher-lg5 configuration
— kink stability and flux surface fragility at &> 10%
— confinement and stability from low b to high b

Improve energetic and thermal ion confinement

Improve coil configuration

— small saddle coils in corners for high-lg5 case
— look at finite cross section modular coils for high-I;5 case
— Improve plasma-coil and coil-coil spacings for low-I;5 case

Assess low and high Iz configurations as reactors



SUMMARY

°* Progress has been made in optimization of the low-lg¢
QO approach (R/<a> = 3.6)
— bootstrap current << current in tokamak for same size and E
— good neoclassical transport (tg o, » 3-5° tg gges), 1 » 0.7
— ballooning stable at din» 3-4%

* An engineering assessment has started
— colil calculations and preliminary cost estimate

* Work has started on a higher-b QO configuration
— ballooning stable up to &ii» 23%; also kink stable at di» 10%

— configuration may allow simpler modular coils and smaller reactor
— neoclassical confinement still needs to be improved



