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Presentation Outline

¥ What is basic saddle coil design?

¥ Why are we using cable conductor?

¥ What are design limits?

Ð Current density

Ð Bend radius

Ð Minimum width of winding

Ð Conductor spacing

¥ What is left to do (R&D status)?



Saddle coils are supported by contoured shell 



Shell winding structure is assembled with bolts

Inboard/outboard wedges attached
by pocketed bolts
    - Pockets formed in casting
    - Machined through hole and back
      spot-face
    - Left/right pockets give fewer
      patterns
    - Feasible for up to 1-in dia bolt
      with 3-in spacing

Inner/outer subassemblies attached
by pins at top and bottom
    - Shop recommends flat and
      perpendicular surfaces on wedge
      ends for alignment

Outboard subassemblies attached by
bolted flanges
    - Three port locations have the
      fewest coil crossings

Outboard Flange

Bolt Pocket

Top/Bottom Interface

Coil Slot



> 6mm
10 mm
inimum

Force = 1900
lbs/inch per
groove

Conductor is located in narrow, closely spaced slots

Tig/Mig weld?

Laser
weld?

Coil Structure

Saddle Coils

~ 3.5-in
Deep
Slots



Why did we choose cable over solid conductor?

¥ Advantages:

Ð Winding flexibility

¥ Grooves are too deep to wind conductor on conventional rotary
table or with bending rollers

¥ Solid conductor is too stiff to wind by hand

Ð Reduced thermal stresses in shell for given temperature rise

¥ Disadvantages:

Ð Effective packing fraction is low, current density in copper is high,
increased temperature for given pulse length

Ð Cooldown between shots is hard to quantify



Current density is primary constraint

¥ The current density is limited by a number of factors

- material temperature limits

- thermal stress due to temperature rise

- power consumption

- cooldown and pulse repetition rate

- fatigue, other effects

¥ The issues, then, are:

- how hot does the conductor get during a pulse?

- how hot can the conductor get before it reaches a limit?



How hot does the conductor get during a pulse?
Depends on pulse length

¥ Reference scenario at 2 Tesla requires 1.03 s ESW
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How hot does the conductor get during a pulse?
Depends on current density in Cu
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Current Density in Cu depends on winding details

Current density vs no. of turns, packing fraction 

C10, 84 kAmps per coil, 16 x 70 mm shell groove

  Insulation thickness = .04", ground wrap+gaps = .02"
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How hot is too hot?

¥ Material temperature limits:

Ð Kapton insulation temperature limit ~260C (temp rise of 450K)

Ð Epoxy potting temperature limit ~ 60C (temp rise of ~250K)

¥ Thermal stress limits:

Ð Thermal stress in shell depends on winding spacing, bolt spacing
and stiffness of winding

Ð Temperature limit can be plotted as a function of bolt stress and
winding stiffness

Ð For 1 in. silicon bronze bolts, preload limited to 17000 pounds,
magnetic load is 8500 pounds, thermal load must be less than 8500
pounds or 15 ksi

Ð For typical winding, temperature limited to ~ 60C (temp rise~250C)



Thermal stress in shell bolts vs temperature shows
dependence on winding stiffness

Allowable temperature rise vs bolt stress 
 and winding stiffness

  C82 winding with ~ one 1.0 in bolt per 4 windings
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How stiff is the conductor?

¥Flexible cable is soft in compression up to packing factor of ~90%
¥Compression modulus of 1e6 psi, (5% of solid)  limits temperature
to ~335K, or 250K rise

Conductor
Sample

4-in dia

13-in

Plunger



What about power consumption?

¥ Power Consumption rises sharply with temperature:

Normalized voltage and power vs temperature
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Coil power > 100 MW for typical case

Power vs temperature for various current densities
Ref C82 coil set winding properties
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What about cooldown, rep rate?

¥ Cooldown of conductor is a
function of total energy input,
coolant mass flow rate, thermal
contact

¥ mass flow must increase to
maintain cooldown time from
higher temperature

¥ thermal contact may diminish
with repeated, high temperature
shots due to lateral compression

¥ Details must be determined by
R&D
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What about fatigue?

¥ The fatigue life of the cable windings depends on the local strain
behavior over multiple shots, both in the copper and the insulation

¥ average current per strand of conductor, and thus the local force on an
individual strand, will be higher for higher current density

¥ Higher temperature excursions during a pulse will result in higher
thermal stress and possible shear stress between the copper and the
insulation

¥ Difficult to quantify the actual fatigue life without testing, so the limits
based on fatigue are TBD until coil R&D test results are available.



What about the minimum bend radius?

¥ The cable conductor is made
from very fine (36 Gage) wire

¥ Even after compaction, this
cable is very flexible, and can
be readily wound on a radius of
1.5 times the conductor
thickness

¥ Recommend bend radius of 3
times the thickness to avoid
excessive key-stoning and
bunching

Before
compaction

After
compaction



What about the conductor slot width?

¥ To machine the shell grooves with conventional tooling and machine
tools to a depth of 70 mm or more, the groove width must be at least
13 mm wide, and preferably wider (10mm rough, 3mm cleanup)

¥ The depth of a single machine cut in such a complex geometry is
limited to no more than the diameter of the cutter, so even at a width
of 13 mm, it would require at least 7 separate machining passes to
rough in the groove and probably another 4 to 6 to clean it up

¥ The time on the machine tool (and cost of machining) is almost
directly proportional to the total linear amount of machining

¥ A 13 mm wide groove costs almost twice as much as a 26 mm wide
groove, even though more material is being removed in the latter
case.



What about the spacing of conductors?
 (shell ligament width)

¥ Width of the ligament depends primarily on the magnetic loads, but prefer
no thinner than 5 mm for machining purposes

¥ Stress is linear with load, and the maximum lateral loads appear to vary
linearly with the winding current

¥ For a constant stress, the ligament width varies as a quadratic, since the
bending stress varies inversely with the square of the thickness and the
shear stress varies linearly with the thickness

¥ Most of the stress is bending, so the relationship can be simplified to:

W-ligament =6 * (I/Inom).5  (but no less than 5 mm)



Magnetic forces tend to bend and shear ligaments
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¥ Conductor Modulus = 1-Gpa (test = 7 Gpa)
¥ Plasma Config C10-2T, Coil Set SAD185-16, Cut Thru One Half-Period

Ligaments between windings must react forces
Minimum ligament for C10 ~6 mm
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Ligament thickness must be scaled with current

Ligament thickness vs normalized current
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Draft Recommendations - Pending further R&D

Parameter Limit Comment

Maximum current density in copper ~22 kA/cm^2 1.03 s ESW pulse
Temp <180K, (power limit)

Nominal current density in copper ~18 kA/cm^2 20 % variation in current for
flexibility

Nominal gross current density over
winding

~7 kA/cm^2 Overall packing fraction, incl.
insulation, <40%

Minimum bend radius 3 * Wcond Limited bunching, keystoning

Minimum shell groove width 13 mm Based on machining limits

Minimum separation of windings
(ligament width)

 Greater of 5mm, or
6 * (I/Inom)0.5 mm,
Inom = 84 kA

Based on stress in ligament

Lower current density and fewer, wider grooves are preferred from cost
and performance standpoint



Cable conductor design criteria summary

¥ Primary issue with cable conductor was stiffness

Ð thermal stresses limited temperature

Ð temperature limited pulse length

¥ R&D indicates that stiffness is low, temperature is limited by other
factors

Ð insulation temp. limits

Ð copper, insulation fatigue

Ð power 180K max temp is factor of 5 on power

Ð cooldown

¥ Criteria document has been written based on nominal limits, but final
document must wait for R&D, including fatigue testing



Plans for saddle coil winding R&D are evolving

Original Plan:

¥ Cable conductor

Ð Fabrication of conductor

Ð Stiffness in compression

¥ Coil fabrication

Ð Practice coil winding / potting

Ð Develop winding closure system

Ð Wind full scale coil in contoured form

¥ Coil operation

Ð Cyclic testing of simple coil at LN2 temperatures

Status:

¥ Conductor fabricated and tested in compression

¥ Lexan and Bronze coil forms manufactured

¥ New, smaller coil form at vendor



Saddle Coil Fabrication

Original Winding/Thermal Cycle Test Fixture

0.5-in wide x .665-in deep + full
radius



Saddle Coil potting

Winding/Thermal Cycle Test Fixture

¥ Potting proposal received from Composite
   Technology Development, Inc.

¥ Recommend CTD528, a low viscosity, room
   temperature cured resin.

¥ Recommend resin inlet/outlet scheme shown.

¥ To be tested in thermal cycle test specimen.

Potting Tests



Saddle coil structural closure

Tig/Mig weld?

Laser
weld?

Coil Structure

> 6mm
10 mm
inimum

Force = 1900
lbs/inch per
groove

Saddle Coils

~ 3.5-in
Deep
Slots



What if we preload the winding pack through the
structural closure?

¥ The winding could be pre-compressed up to the expected magnetic
loading to avoid most of the motion during operation

¥ Potting may be unnecessary

Ð fewer voids or gaps to fill after preloading

Ð the winding would stay in better contact with the groove walls

Ð cooling may be better w/o potting



Status
¥ Drawings complete and at vendor
¥ Material in hand
¥ Stereolithography parts ordered

Winding/Thermal Cycle Test to investigate coil cool-
down behavior during pulsed thermal cycles



Everything was going ok ( a little behind)  and then:

¥ New coil topologies and configurations show remarkable decrease in
saddle coil current densities:

Ð C82 has current density of ~ 25kA/cm^2 at 2 Tesla

Ð New configuration, case 121, reduced to ~9 kA/cm^2

¥ Water cooling may be feasible in the 10kA/cm^2 range

¥ SoÉ do we continue with the present R&D plan, or stop to see what
happens with the new coil studies?



Water cooling possible at ~ 10kA/cm^2 in Cu

Pulse length vs current density in copper,
Cooled by water, chilled water, LN2
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LetÕs keep going, but with some mods

¥ For now:

Ð Fabricate the small coil winding form

Ð Wind the New England wire insulated square conductor

Ð Preload the windings, (do not pot them yet)

Ð Perform cyclic thermal and electrical testing

Ð Look for loss of preload

¥ Modify plans as new configuration is developed and key decisions are
made



Decision #1:  water or LN2 cooling?

¥ LN2 :

Ð continue tests

Ð pot the winding, if necessary for cooling and/or structural reasons

¥ Water:

Ð Order new conductor (larger, maybe internal cooling)

Ð Remove LN2 compatible winding

Ð machine grooves to larger size

Ð repeat tests



Decision #2:  saddle coils or no saddle coils?

¥ Keep saddle coils

Ð Finish coil testing

Ð Continue plans for prototype winding

¥ Eliminate saddle coils

Ð Stop coil R&D until new coil problems identified



Saddle coil R&D status summary

¥ Some progress has been made in saddle coil R&D

Ð Conductor stiffness tests complete (cable is not very stiff)

Ð 1000 feet of practice cable in hand

Ð New test article designed and in fabrication at vendor

¥ Saddle coil R&D is being re-scoped to consider water cooled design

Ð Larger conductor

Ð Different cooling scheme? (eg, internal cooling?)

¥ Cable conductor cooling, fatigue are main issues to be investigated near
term with small coil test


