
Island reduction using boundary perturbations.

NCSX Project Meeting

Sep 26-27 2000

S.R.Hudson, D.A.Monticello, M.Zarnstorff, A.H.Boozer

Abstract

• Islands are modeled using the PIES code. VMEC is used to prepare

input files for PIES.

• The effect of making small changes the boundary on island size is inves-

tigated.

• By measuring the resonant fields at rational surfaces, partial derivatives

relating small changes in the boundary to changes in resonant fields are

calculated.

• This information is used to determine the boundary changes which will

reduce the resonant fields and thus reduce island width. The configura-
tion li383 is examined.
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Quadratic Flux Minimizing Surfaces [1, 2]

• Resonant normal magnetic fields are responsible for islands. They may

be calculated via the construction of quadratic-flux minimizing surfaces.

• The action integral is the integral of the magnetic vector potential A

along a curve :

S =
∮

A · dl =
∮

(Aρρ̇ + Aθθ̇ + Aζ)dζ, (1)

• The quadratic-flux functional is a surface integral of the action gradient,

ϕ2 =
1

2

∫ ∫ [
δS

δθ

]2

dθdζ. (2)

• An Euler-Lagrange equation is derived for extremal surfaces,

(Bθ∂θ + Bζ∂ζ)
δS

δθ
= 0, (3)

• Quadratic-flux minimizing surfaces are comprised of a family of periodic

pseudo field lines of the field tangential to the surface, along which the
action gradient is constant.

Bν · ∇ ≡ (Bθ∂θ + Bζ∂ζ) = B− νJ er (4)
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Quadratic-Flux Minimizing Surface – Example

Figure 1:

• The above plot shows the action gradient (normal field) with arrows.

The quadratic-flux surface passes directly through the X and O points

and is shown with a solid line. A Poincare plot with 3 starting points

(at the X point, the O point and the mid point) is shown with dots.

• The construction of a quadratic-flux minimizing surface at a chosen is-
land chain locates the X and O periodic trajectory, and entails a deter-

mination of the normal component of the magnetic field.

• If the shear of the ‘underlying integrable field’ is known, then island

widths and separatrices may be precisely calculated. The separatrix is

plotted with a solid line.

• Furthermore, quadratic-flux minimizing surfaces may be used to approx-

imate KAM surfaces, and thus be used to partition regions of chaos, and

provide a convenient set of surfaces for generalized magnetic coordinates
for toroidal fields with islands and chaotic regions.
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Coupling Matrix

• Variations δBm,n in resonant field amplitudes Bm,n at rational (ι =

3m/n) quadratic-flux-minimizing surfaces are related to variations in

boundary harmonics δn,m via a coupling matrix C to which SVD method

is applied

δBm,n = Cδ = UwV Tδ (5)

• The coupling matrix is determined by adding a series of small harmonics

(about one millimeter) to fixed boundary VMEC runs and running PIES

(say for about 32 iterations).

• By choosing a perturbation δR according to

δR = V w−1UTB (6)

where B are the original resonant fields, (and the singular values have

been zeroed), a set of island reducing perturbations is obtained.

• If there are more variables than equations (ie. more boundary perturba-

tions are considered than resonant fields), more than one solution exists

(spanned by the null-space) and other physics properties of the configu-
ration may be optimized.

• If fewer boundary perturbations than resonant fields are considered, one
is satisfied with a best solution.

• The coupling matrix may be singular, indicating no solution for δR.
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Example – li383 – rotational transform

• the rotational transform profile is used to identify rational surfaces

present in a given configuration

Figure 2: full current full pressure li383 – rotational transform profile
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Example – li383 – initial configuration

Figure 3: full current full pressure li383 – Poincare plot
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Example – li383 – coupling matrix

• A set of N boundary perturbations are chosen and N VMEC/PIES runs

enables determination the coupling matrix :



δB1,7

δB3,20

δB2,13

δB3,19

δB1,6

δB3,17

δB2,11

δB3,16

δB1,5




=




−0.06124 0.03861 −0.04465 −0.08002 −0.00859
0.00006 −0.00025 0.00001 0.00003 −0.00001

−0.00756 0.00708 −0.00029 −0.00050 −0.00057

−0.00021 0.00056 0.00001 0.00012 0.00003

−0.14365 −0.44514 0.11457 −0.30841 −0.04901
−0.00718 0.00486 −0.00010 0.00183 −0.00045

−0.13048 0.00200 −0.06524 0.02446 0.00307

0.02919 −0.00438 0.00373 −0.00278 0.00094
0.77286 −0.74143 −0.91646 −0.15419 −0.29131







δ1,8

δ1,7

δ1,6

δ1,5

δ1,4




(7)

δR = ( −0.00002 , −0.00057 , 0.00161 , 0.00073 , 0.00211 )T (8)

• With this perturbation, a new VMEC/PIES run is performed and the

new resonant fields are measured :

initial

0.00017

0.00000

0.00001

0.00000
−0.00011

0.00000

0.00008

−0.00001
0.00180

iter1

0.00008

0.00000

−0.00000

−0.00000
0.00026

0.00000

−0.00009

0.00000
−0.00003

(1, 7)

(1, 6)

(1, 5)

47%

236%

2%

(9)

• The dominant (1, 5) harmonic is significantly reduced. The (1, 6) has

doubled, but is still small.
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li383 IR – results

Figure 4: li383-IR

• the (1, 5) island is reduced in size but a (2, 10) (not targeted in present

work) is now showing.
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Pressure induced self-healing

• It was noted that the li383-IR configuration produced an increased (1, 5)
island as the pressure was lowered, suggesting pressure induced self-

healing.

Figure 5: full current zero pressure li383-IR
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Example – li383 modular – case 1 – initial configuration

Figure 6: li383 modular – Poincare plot
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Example – li383 modular – case 1 – coupling matrix




δB1,7

δB3,20

δB2,13

δB3,19

δB1,6

δB3,17

δB2,11

δB3,16

δB1,5




=




−0.00745, −0.01960, −0.03878, 0.11187, 0.16382,
0.00002, 0.00006, 0.00000, 0.00000, 0.00005,

0.00432, 0.01719, −0.00421, 0.00318, −0.00065,

0.00073, 0.00266, −0.00011, 0.00053, 0.00026,

−0.51694, −1.64426, 0.01973, −0.62650, 0.09014,
0.00746, 0.05556, −0.00490, 0.00524, 0.00261,

0.03254, 0.38586, −0.14787, −0.00967, −0.04361,

0.00412, 0.04030, −0.02104, −0.01292, −0.00877,
0.29009, −1.06014, −1.29179, −0.52548, −0.60014,







δ1,8

δ1,7

δ1,6

δ1,5

δ1,4



(10)

δR = ( 0.00529 , −0.00099 , −0.00078 , −0.00300 , 0.00257)T (11)

• With this perturbation, a new VMEC/PIES run is performed and the

new resonant fields are measured.

initial

−0.000096
0.000000

0.000010

0.000000

−0.000981
0.000015

0.000175

−0.000011

−0.003621

iter1

0.000267
−0.000001

0.000032

0.000002

0.000681
−0.000019

0.000110

0.000019

−0.000713

iter2

0.000087
0.000000

0.000012

0.000003

−0.000212
0.000008

−0.000688

−0.000048

−0.000213

(1, 7)

(1, 6)

(1, 5)

(12)

• The resonant fields decrease with iterations.
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li383 modular IR – case 1 – after 1 iteration

Figure 7: li383-IR
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li383 modular IR – case 1 – after 2 iterations

Figure 8: li383-IR

• The (1, 5) island is reduced in size but a (2, 10) (not targeted in present
work) is now showing. The (1, 6) island is reduced.
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Example – li383 modular – case 2 – initial configuration

Figure 9: li383 modular – Poincare plot
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Example – li383 modular – case 2 – coupling matrix




δB1,6

δB2,11

δB1,5

δB3,14


 =




−0.67516, −1.72788, 0.24369, −0.34000, −0.48345,

−0.14784, 1.37072, 1.13847, 1.34803, −0.25746,
0.15902, −0.97402, −1.09897, −0.50774, −0.71493,

−0.03325, −0.05900, −0.02396, 0.06071, −0.02650,







δ1,8

δ1,7

δ1,6

δ1,5

δ1,4



(13)

δR = ( 0.0007 , 0.0010 , 0.0015 , −0.0027 , 0.0002 )T (14)

• With this perturbation, a new VMEC/PIES run is performed and the

new resonant fields are measured :

initial

0.001030
0.000697

0.001300

0.000291

iter1

0.001443
0.000714

−0.000686

0.000142

iter2

0.000048
0.000683

−0.000726

0.000185

← (1, 6)
← (2, 11)

← (1, 5)

← (3, 14)

(15)
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li383 modular IR – case 2 – iteration 1

Figure 10: li383-IR
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li383 modular iR – case 2 – iteration 2

Figure 11: li383-IR

• The (1, 5) is reduced, but again the (2, 10) is showing. The (1, 6) is

reduced.
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Summary

• Results thus far indicate that it is possible to control the island size using
boundary perturbations. Typical boundary perturbations are about one

millimeter.

Future work

• Develop algorithm focusing on flexibility and robustness, including im-

plementation of Broyden’s method of updating Coupling Matrix.

• Consider more boundary perturbations and higher order islands, in par-

ticular the (2, 10).

• Implement free boundary PIES calculations.

• Consider manipulating island phase.

• Extract information regarding the sensitivity of island formation on ex-

ternal fields – design of trim coils.

• Understand underlying driving mechanisms of island formation.
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