NCSX Project Contingency Analysis July 2007

Introduction

This document describes the process and approach used to develop the cost and schedule contingency estimates included in the proposed baseline for the National Compact Stellarator Experiment (NCSX) Project. The contingency estimate is based on inputs of all key members of the project team using a structured process based on established DOE and industry methodologies. The contingency estimates are intended to reflect the inherent uncertainty associated with the current NCSX estimates-to-complete (ETC) and the currently identified project risks.

Overview of Methodology and Approach

The NCSX Project Team employed a structured process developed and implemented with the support of a consultant with extensive DOE and industry experience. The objective of this process was to assess and analyze all areas of risk and uncertainty that might affect the cost and schedule estimates for the project. Probabilistic Risk Analysis Techniques (Monte Carlo Analysis) were used to derive recommended contingency allowances that provide 90% confidence that the proposed baseline estimate will not be exceeded.

Separate models were constructed to account for inherent uncertainty of the cost and schedule estimates as well as the potential residual impact of identified project risks. Each of these models is described in the following sections of this document.

Cost Estimate Uncertainty Model

Both cost estimates and schedule durations have inherent levels of uncertainty. In general, the level of such uncertainty is a direct result of the degree of design maturity and the complexity of the elements involved – in effect, how much definition exists to provide a basis for the estimates. For this reason, standard cost estimating practice describes uncertainty levels in terms of ranges around the point estimates which, in the case of NCSX, were developed by Job Managers and the Project Management team.

The NCSX Project relied on standard industry and DOE cost estimate classifications to describe the expected range of individual job estimates. In particular, a combination of design maturity and complexity was used to equate each job estimate to a particular cost estimate classification level which could then be used to assign an expected estimate range to each estimate.

Each job estimate was assigned a design maturity and complexity rating based on the definitions shown in Tables 1 and 2.

Design Maturity Demittion						
High	Final design available. All design features/requirements well known. No further design development or evolution expected that will impact estimate.					
Medium	Preliminary design available. Some additional design evolution likely. Further developments can be somewhat expected or anticipated and reflected in estimate.					
Low	No better than conceptual design basis currently available. Design details, procedures, etc. still need much development and evolution of requirements beyond estimate basis is likely and expected.					

	Table 1 gn Maturity Definition			
Design	Maturity	Definition		

Table 2 Design Complexity Definition

Low	Work is fairly well understood either standard construction or repetition of activities performed in past. Little likelihood of estimate not being well understood and requirements not being well defined.
Medium	More complex work requirements that have potential to impact cost and schedule estimates. Limited experience performing similar tasks, so ability to estimate accurately is somewhat suspect
High	Extremely challenging tasks and/or requirements. Unique or first- of-a-kind assembly or work tasks. No good basis for estimating work exists so there is a high degree of estimate uncertainty.

Based on standard industry and DOE estimate classifications (Per AACEI Recommended Practice 18R-97, *Cost Estimate Classification System – As Applied to Engineering, Procurement, and Construction in the Process Industries*), the NCSX estimates were equated to the appropriate class of estimate based on the design maturity and complexity ratings, as shown in Table 3. The standard industry estimate ranges were then used as a basis to describe the expected range of each NCSX job estimate, using the maturity and complexity ratings, as shown in Table 4.

Table 3 NCSX Estimate Classification							
Estimate Class	Level of Definition	Accuracy Range	NCSX Definition				
5 - ROM DOE CD-0	0 - 2%	Low: -20 % to -50% High:+30% to +100%	L Maturity H Complexity				
4 - Conceptual DOE CD-1	1 - 15%	Low: -15% to -30% High:+20% to +50%	MH and LM				
3 - Preliminary DOE CD-2	10 - 40%	Low: -10% to -20% High:+10% to +30%	LL, MM, and HH				
2 DOE CD-2 or 3 30 - 70%		Low: -5% to -15% High:+5% to +20%	ML and HM				
1 - Definitive DOE CD-3	50 - 100%	Low: -3% to -10% High:+3% to +15%	H Maturity L Complexity				

Table 4NCSX Estimate Ranges

			Design Complexity							
		Lo	Low Medium High							
_ >	Low	-15%	+25%	-20%	+40%	-30%	+60%			
Jesigr laturit	Medium	-10%	+15%	-15%	+25%	-20%	+40%			
	High	h -5% +10% -10% +15% -15%								

The distribution of the NCSX Estimates to Complete by uncertainty level is shown in Table 5. As can be seen in Table 5, at this time, approximately 31% of the remaining NCSX project costs are based on a level of definition that does not meet the expectations of DOE O 413.3A for establishing a baseline (i.e., CD-2).

Table 5	
NCSX Estimate to Complete by Design Maturity and Complexity Rat	ting

				Design Maturity/Complexity				
<u>WBS</u>	Description	<u>ETC</u>	<u>Frozen</u>	<u>HL</u>	<u>ML &</u> <u>HM</u>	<u>MM,LL,HH</u>	<u>MH &</u> LM	<u>LH</u>
Assun	ned Estimate Accuracy	Range		-5 to +10%	-10 to +15%	-15 to +25%	-20 to +40%	-30 to +60%
12	Vacuum Vessel	156	-252	408				
13	Conventional Coils	3,460	-32	337	1,111	2,044		
14	Modular Coils	6,241	-116		501	3,901	1,955	
15	Structures	1,262			1,262			
16	Coil Services	862		862				
17	Cryostat & Base Support Structure	785		325	253		207	
18	Field Period Assembly	10,105			5,727	515	1,548	2,315
19	Stellarator Core Mgmt & Integr	1,620		1,620				
2	Auxiliary Systems	240			172	68		
3	Diagnostics	717		454		263		
4	Electrical Power Systems	2,425	-104	1,445	1,084			
5	I&C Systems	1,136		69	640	205	222	
6	Facility Systems	1,379				151	1,228	
7	Test Cell Prep & Machine Assy	7,952	-249			617	7,584	
8	Project Oversight & Support	12,508	174	9,176		2,562		597
	Total	50,849	-580	14,696	10,751	10,326	12,744	2,912
	% of Total	100%	-1%	29%	21%	20%	25%	6%

The ranges shown in Table 4 were then used with the job manager's point estimate to describe a probability profile for each estimate as an input to a Monte Carlo analysis using Crystal Ball[®] and Microsoft Excel software. Each job estimate was treated as an independent variable (except for a few job estimates which were correlated to each other) with cost outcomes described as a triangular distribution where the base estimate is the most likely value, the low end of the range is the minimum value, and the high end of the range is the 80% confidence level value (there is a 20% chance the actual costs could exceed this value). Appendix A shows each job point estimate, the rating of design maturity and complexity, and the resultant ranges used as the inputs to the Monte Carlo probabilistic analysis. Information on individual estimate probability profiles, correlation factors, etc. can be found in the Crystal Ball[®] Report included as Appendix H (these are called "assumptions" in Crystal Ball[®].)

In addition, as a check of the above standard estimate ranges, the NCSX Project also solicited Job Manager opinions regarding the expected range around each of their estimates (+ or – some % of the estimate). It was found that the results of both approaches yielded similar results using the Monte Carlo analysis model, but the standard ranges were selected for the final model so as to introduce consistency into the uncertainty ranges of all job estimates, without the effect of individual job manager biases.

Schedule Uncertainty Model

The inherent uncertainty of the schedule duration estimates were evaluated in a similar manner as was the cost estimate uncertainty. For the schedule, a model that focused only on critical and near critical path activities was used. For each activity identified and included in this model, a duration range was established using the same maturity and complexity ratings and resultant estimate uncertainty ranges as were used for costs.

As with the cost uncertainty model, Monte Carlo analysis was used to determine the overall project schedule probability profile. Each critical path (or near critical path) activity was treated as an independent variable, however when appropriate, the schedule and cost estimate uncertainty of individual jobs were correlated (that is, if the costs went up, the schedule duration would likely increase, and vice versa). Triangular distributions were assumed with the base duration estimate being the most likely value, the low end of the range representing the minimum duration, and the high end of the range having a 90% confidence level (higher than for costs since schedule workarounds are more often possible). In addition, the model capped or limited the durations for some activities that could be worked on a second shift to minimize the upper end of potential durations. However when this is necessary, the model added a cost allowance for shift supervision, support and shift differential costs.

The inputs for the schedule uncertainty model are included as Appendix B of this document.

<u>Risk Model</u>

In addition to the models used to assess and quantify cost and schedule estimate uncertainty, a separate model was used to assess the level of contingency needed to accommodate residual risk impacts. The basis for this model is the NCSX Risk Register and the estimated likelihood of occurrence of risks and risk impact estimates included therein. The process used to identify risks and to manage identified risks is described elsewhere. The model used to estimate risk related cost and schedule contingency allowances is described below.

The Risk Model assumes each identified risk has a chance of occurring based on the "likelihood" assessments determined for each risk, as described in Table 6.

Probability of C	Occurrence	
Qualitative	Quantitative	Criteria
Very Unlikely	<0.1	Will not likely occur anytime in the project life cycle, or the probability of the occurrence is judged to be less than 10%.
Unlikely	>0.1 but <0.4	Unlikely to occur in the project life cycle, or the probability of the occurrence is judged to be greater than 10% but less than 40%.
Likely	>0.4 but <0.8	Will likely occur sometime during the project life cycle of the project or its facilities, or the probability of the occurrence is judged to be greater than 40% but less than 80%.
Very Likely	>0.8	Very likely to occur sometime during the project life cycle or the probability of occurrence is judged to be 80% or greater.

Table 6Likelihood of Risk Occurrence

Within the Monte Carlo analysis model, each likelihood description (likely, unlikely, etc,) is represented by a uniform probability profile (e.g., if "likely", then there is an equal chance of from 40% to 80% of the time that risk event will occur). If an event does occur, then the estimated cost and schedule impact ranges will be realized with another uniform probability profile for the impact range (that is, there is an equal chance any value from the low estimate to the high estimate will be realized). These probability profiles were used as the input variables for the Monte Carlo analysis using Crystal Ball[®] and Microsoft Excel software. The Risk Model inputs are shown in Appendix C of this document.

Summary of Results

The result of the NCSX uncertainty and risk models is displayed in the figure below (the detailed probability profile of each uncertainty and risk element can be found in Appendix D and E, respectively). The contingency allowances needed to attain a 90% confidence the proposed ETC will not be exceeded are summarized in Table 7. The ETC for the NCSX Project at the 90% level of confidence is approximately \$63 million.

Base Schedule	45.25	months
Schedule Uncertainty Contingency at 90%	7.88	
Risk Schedule Contingency at 90%	3.76	
Total Schedule Contingency (90%)	11.63	months
Base ETC	50,849	
Contingency at 90% (Std Uncertainty)	8,036	16%
Cost of Schedule Uncertainty Contingency	1,589	3%
Cost of Schedule Risk Mitigation	355	1%
Total Uncertainty Contingency - 90% Confidence	9,981	20%
Risk Cost Contingency (from Risk Model) at 90%	1,282	3%
Risk Schedule Contingency (cost of stretch) - 90%	758	1%
Total Risk Contingency - 90% Confidence	2,040	4%
Total Cost Contingency (90%)	12,021	24%
ETC with Contingency (@90%)	62,869	
Contingency Spread by Year		\$М
2008	20%	2.40
2009	25%	3.01
2010	30%	3.61
2011	25%	3.01

Table 7Contingency Analysis Results

Table 7 summarizes the months of schedule contingency needed to achieve 90% confidence in the schedule end date (CD-4) as a result of both schedule estimate uncertainty (as it impacts the project critical path), and the potential residual impacts of project risk events.

Also shown in Table 7 are the cost contingency allowances necessary to attain a 90% level of confidence in the Estimate to Complete for the NCSX Project. The cost contingency is comprised of the following elements:

- Standard estimate uncertainty allowance
- Cost associated with the schedule uncertainty (project costs that would be incurred as the project schedule is stretched see Appendix F)
- Cost of Schedule Risk Mitigation representing the added costs to be incurred if and when second shift operations are needed to maintain the project schedule (or limit the amount of schedule stretch) as a result of schedule uncertainty – see Appendix F
- Risk Contingency which includes both cost impacts and the cost that is incurred as a result of schedule impacts of risk events

Table 7 also depicts the proposed spread of contingency dollars by fiscal year, the basis for which can be found in Appendix G.

At the request of DOE HQ, the calculated contingency allowance was subsequently allocated to individual WBS elements. Although the contingency will not be managed in this way, this portrayal is useful for assessing to what degree the various WBS elements contribute to the uncertainty and risks for the NCSX Project. The results of this allocation are shown in Table 8. The following methodologies were used to derive this contingency allocation:

- Uncertainty was distributed by forecasting the Monte Carlo analysis results for each WBS and determining the percentage each WBS element contributed to a sum of the 90% confidence points for each WBS element.
- Schedule cost contingency was allocated to the WBS elements for which those costs will be required – the "standing army" costs associated with schedule stretch that are primarily project management related elements.
- The schedule mitigation cost was assigned to the WBS element that would require additional shift work if the schedule uncertainty is realized.
- The risk contingency was allocated on the basis of WBS elements assigned for each identified risk. In the case of risks such as labor rate or escalation changes, the risk contingency was spread proportionally across all potentially impacted WBS elements.

Appendices

- A. Estimate Uncertainty Ranges
- B. Schedule Uncertainty Ranges
- C. Risk Model Inputs
- D. Uncertainty Model Results
- E. Risk Model Results
- F. Schedule Contingency Costing Bases
- G. Basis for Spread of Contingency by Fiscal Year
- H. Crystal Bali[®] Report

WB	S		Allocation o	Allocation of Contingency Allowances					
					Sched			% of	
		ETC	Uncertainty	Schedule	Mitig	Risk	Total	ETC	% of Conting.
12	Vacuum Vessel	156	30			10	40	26%	0.3%
13	Conventional Coils	3,460	527			175	702	20%	5.8%
14	Modular Coils	6,241	1,002			406	1,408	23%	11.7%
15	Structures	1,262	173			8	181	14%	1.5%
16	Coil Services	862	67			225	292	34%	2.4%
17	Cryostat & Base Support Structure	785	112			5	117	15%	1.0%
18	Field Period Assembly	10,105	1,645		355	127	2,128	21%	17.7%
19	Stellarator Core Mgmt & Integr	1,620	127	179		10	317	20%	2.6%
2	Auxiliary Systems	240	34			2	36	15%	0.3%
3	Diagnostics	717	84			5	88	12%	0.7%
4	Electrical Power Systems	2,425	182			53	235	10%	2.0%
5	I&C Systems	1,136	156			7	163	14%	1.4%
6	Facility Systems	1,379	372			9	381	28%	3.2%
7	Test Cell Prep & Machine Assy	7,952	2,375			162	2,536	32%	21.1%
8	Project Oversight & Support	12,508	1,150	2,168		79	3,397	27%	28.3%
	Total	50,849	8,036	2,347	355	1,282	12,021	24%	100.0%

Table 8 Contingency Allocation by WBS

APPENDIX A

COST ESTIMATE UNCERTAINTY RANGES

						Estimate U	ncertainty
					updated	Ran	ge
WBS2	Job	WBS4	Maturity	Complexity	TOTAL	Low	High
12	1204 - Job: 1204 - VV Sys Procurements (nonVVSA)-DUDEK	124P - VV Personnel Access Port & Lateral sprts	Н	L	84	80	92
	1204 - Job: 1204 - VV Sys Procurements (nonVVSA)-DUDEK	125 - VV Local I&C	Н	L	34	33	38
	1204 - Job: 1204 - VV Sys Procurements (nonVVSA)-DUDEK	122 - Thermal Insulation	Н	L	220	209	242
	1204 - Job: 1204 - VV Sys Procurements (nonVVSA)-DUDEK	124T - Heater Tape for Port Stub	Н	L	20	19	22
	1204 - Job: 1204 - VV Sys Procurements (nonVVSA)-DUDEK	124U - T/C and Heater Tape Leads	Н	L	37	35	41
	1204 - Job: 1204 - VV Svs Procurements (nonVVSA)-DUDEK	124V - Flux loop junction boxes and spacer templates	Н	L	12	12	14
	1250 - Job: 1250 - Vacuum Vessel Fabrication**CLOSED**		Ff	ROZEN	(252)	-252	-252
13	1302 - Job: 1302 - PF Design -KALISH	RBLX - FY07 Rebaseline Exercise	Ff	ROZEN	5	5	5
	1302 - Job: 1302 - PF Design -KALISH	-	L	L	253	215	316
	1352 - Job: 1352 - PF Coil Procurement-KALISH	13P - PF Coil Fabrication	L	L	1,630	1,385	2,037
	1353 - Job: 1353 - CS Structure Procurement-DAHLGREN	132A - CS Support Structure	Н	L	337	320	371
	1354 - Job: 1354 - Trim Coil Design & Procurement-KALISH	133 - Trim Coils	L	L	162	138	202
	1355 - Job: 1355 - WBS 13 I&C Proc and Coil Assy-KALISH	134 - TF/PF Loacl I&C	М	L	72	65	83
	1361 - Job: 1361 - TF Fabrication-KALISH	130 - TF Title III and Fabrication Oversight	Н	М	213	191	245
	1361 - Job: 1361 - TF Fabrication-KALISH	13Y - TF Fabrication Contract	Н	М	826	744	950
	1361 - Job: 1361 - TF Fabrication-KALISH	RBLX - FY07 Rebaseline Exercise	Ff	ROZEN	1	1	1
	1361 - Job: 1361 - TF Fabrication-KALISH	-	Ff	ROZEN	(38)	-38	-38
14	1404 - Job: 1404 - MCWF R&D 1st Prod Casting**CLOSED**	-	Ff	ROZEN	(36)	-36	-36
	1408 - Job: 1408 - MC Winding Supplies-CHRZANOWSKI	-	L	М	350	280	489
	1411 - Job: 1411 - MCWF Fabr. S005242-HEITZENROEDER	-	Ff	ROZEN	(80)	-80	-80
	1416 - Job: 1416 - Mod Coil Type AB Fnl Dsn-WILLIAMSON	MCDB - Clamp hardware modifications	L	М	8	6	11
	1416 - Job: 1416 - Mod Coil Type AB Fnl Dsn-WILLIAMSON	MCDC - Blanket thermal insulation	L	М	23	19	33
	1416 - Job: 1416 - Mod Coil Type AB Fnl Dsn-WILLIAMSON	MCDE - Top level assy models/drawings	L	М	76	61	107
	1416 - Job: 1416 - Mod Coil Type AB Fnl Dsn-WILLIAMSON	MCDF - Analysis and closeout documentation	L	М	165	132	231
	1416 - Job: 1416 - Mod Coil Type AB Fnl Dsn-WILLIAMSON	TCCO - Type C Design Closeout	L	М	7	6	10
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142A - Outboard Interface	L	М	25	20	35
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	-	L	М	273	218	382
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142B - Outboard Interface-Bolted Joint Tests-Tension	L	М	72	58	101
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142C - Outboard Interface-Bolted Joint Tests-Shear	L	М	89	71	124
	1429 - Job: 1429 - MC Interface R&D-GETTELFINGER	142D - Outboard Interface-Friction	L	М	118	95	165
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142E - Inboard Interface-Design	L	М	173	138	242
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142F - Inboard Interface-AB/BC/AA	L	М	94	75	131
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142G - Inboard Interface-CC	L	М	237	190	332
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142H - Weld Access test	L	М	104	83	146
	1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON	142J - Overall MC Interface	L	М	140	112	196
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	TECH - Misc Tech Shop Support	М	М	77	65	96
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	BLAD - Bladders	М	М	16	14	21
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	BUSH - Bushings	М	М	54	46	68
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	SHMS - Shims-Outboard	М	М	139	118	173
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	SHMT - Shims-Inboard	М	М	19	16	24
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	SHMU - Shims- C-C Joint	М	М	17	15	22
	1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK	STUD - Studs Washers Nuts	М	М	717	609	896
	1451 - Job: 1451 - Mod Coil Winding-CHRZANOWSKI	1A - Station 1a/4 Casting Prep	Н	Н	248	211	310
	1451 - Job: 1451 - Mod Coil Winding-CHRZANOWSKI	2 - Station 2-Winding Instl Chill Plates Tubing Bag	Н	Н	578	491	723
	1451 - Job: 1451 - Mod Coil Winding-CHRZANOWSKI	3 - Station 4-Winding Instl Chill Plates Tubing Bag	Н	Н	646	549	807
	1451 - Job: 1451 - Mod Coil Winding-CHRZANOWSKI	5 - Station 5-VPI	Н	Н	327	278	408
	1451 - Job: 1451 - Mod Coil Winding-CHRZANOWSKI	1 - Station 1 Post VPI	Н	Н	203	173	254
	1451 - Job: 1451 - Mod Coil Winding-CHRZANOWSKI	LABR - LOE Oversight & Supervision	Н	Н	860	731	1,075
	1459 - Job: 1459 - Mod Coil Fabr.Punch List-CHRZANOWSKI	PLTS - Punchlist Tech shop/RESA	М	L	176	158	202

WBS2	Job	WBS4	Maturity	Complexity	TOTAL	Low	High
	1459 - Job: 1459 - Mod Coil Fabr.Punch List-CHRZANOWSKI	PLCT - Punchlist- Coil Technicians	Μ	L	325	293	374
15	1501 - Job: 1501 - Coil Structures Design-DAHLGREN	-	Μ	L	187	168	215
	1550 - Job: 1550 - Coil Struct. Procurement -DAHLGREN	-	М	L	1,076	968	1,237
16	1601 - Job: 1601 - Coil Services Design-GORANSON	RBLX - FY07 Rebaseline Exercise	Н	L	6	6	7
	1601 - Job: 1601 - Coil Services Design-GORANSON	161 - 161 - LN2 Distribution	Н	L	339	322	373
	1601 - Job: 1601 - Coil Services Design-GORANSON	162 - 162 - Electrical Leads	Н	L	479	455	527
	1601 - Job: 1601 - Coil Services Design-GORANSON	163 - 163 - Coil Protection System	Н	L	38	36	42
17	1701 - Job: 1701 - Cryostat Design-GETTLEFINGER	_	L	М	207	166	290
	1702 - Job: 1702 - Base Support Struct Design-DAHLGREN	_	M	L	163	147	188
	1751 - Job: 1751 - Cryostat Procurement-GETTLEFINGER	_	H	L	325	309	357
	1752 - Job: 1752 - Base Support Proc-DAHLGREN	172 - 172 - Base Support Structure	M		90	81	103
18	1802 - Job: 1802 - EP Assy Oversight&Support-VIOLA	A - Oversight and Supervision	Н	M	1 988	1 789	2 286
10	1803 - Job: 1803/1805- EPA Tooling/Constr-BROWN/DUDEK	2 00 - Station 2-Modular Coil, Sub- Assembly	1	1	-	0	0
	1803 - Job: 1803/1805- EPA Tooling/Constr-BROW/N/DUDEK	3.00 - Station 3-Modular Coll to VVSA Assembly	M	-	122	110	140
	1803 - Job: 1803/1805- EPA Tooling/Constr-BROWN/DUDEK	5.00 - Station 5-Final Field Period Assembly	M		186	168	214
	1803 - Job: 1803/1805- EPA Tooling/Constr-BROWN/DUDEK	6.00 - 6.00-Final Machine Assembly	1	M	214	171	200
	1906 Job: 1906 EB Assambly space and drawings COLE		M	M	17	1/1	200
	1906 Job: 1906 ED Assembly spees and drawings-COLE	2.00 Station 2 Medular Cail Sub Assembly	M	M	26	22	21
	1806 - Job. 1806 - FP Assembly specs and drawings-COLE	2.00 - Station 2-Modular Coll Sub-Assembly	IVI M	IVI	52	22	52
	1806 - Job: 1806 - FP Assembly specs and drawings-COLE	5.00 - Station 5-Modular Coll to VVSA Assembly	IVI	IVI	112	44	141
	1806 - Job: 1806 - FP Assembly specs and drawings-COLE	5.00 - Station 5-Final Field Period Assembly	IVI	IVI	113	90	141
	1806 - Job: 1806 - FP Assembly specs and drawings-COLE	6.00 - 6.00-Final Machine Assembly	IVI	IVI	132	112	104
	1806 - Job: 1806 - FP Assembly specs and drawings-COLE		IVI	IVI	176	150	221
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	SUPU - General Assy Support		IVI	2,922	2,030	3,301
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S1P1 - Station 1-VV Prep (hard surface components) FP#1	н	IVI	132	118	151
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S1P2 - Station 1- VV Prep (hrd surf cmpntsFP#2	н	IVI	136	122	156
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S1P3 - Station 1- VV Prep (hrd surt cmpntsFP#3	н	IVI	210	189	241
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S1SP - Station 1-Spool pieces (3) (spacers)	н	M	31	28	36
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2PR - Station 2 Trials & Development	L	н	533	373	853
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2PX - Setup	L	н	100	70	161
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2PM - Pre-Measuring and fitup checks	L	н	169	119	271
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2P1 - Station 2-MC Sub Assy A1-B1-C1	L	H	160	112	256
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2PZ - Station 2 MC Sub Assy A2-B2-C2	L	H	95	67	153
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2P2 - Station 2-Modular Coil Subassembly-FP#2	L	H	280	196	448
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S2P3 - Station 2-Modular Coil Subassembly-FP#3	L	Н	285	200	456
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S3P0 - Station 3 Setup/Preparations/General	L	Н	181	127	290
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S3P1 - Station 3-Assemble Mod Coils and VVSA-FP#1	L	Н	167	117	267
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S3P2 - Station 3-Assemble Mod Coils and VVSA-FP#2	L	H	171	120	274
	1810 - Job:1810-Field Period Assy -Station 1 2 3 VIOLA	S3P3 - Station 3-Assemble Mod Coils and VVSA-FP#3	L	Н	173	121	276
	1815 - Job: 1815 - Field Period Assy -Station 5-VIOLA	S4P0 - Setup/Preparations/General	L	M	223	179	312
	1815 - Job: 1815 - Field Period Assy -Station 5-VIOLA	S4P1 - Station 5- Final FP Assy -FP#1 (in NCSX TC)	L	M	363	290	508
	1815 - Job: 1815 - Field Period Assy -Station 5-VIOLA	S4P2 - Station 5- Final FP Assy -FP#2 (in NCSX TC)	L	M	373	298	522
	1815 - Job: 1815 - Field Period Assy -Station 5-VIOLA	S4P3 - Station 5- Final FP Assy -FP#3 (in NCSX TC)	L	М	376	300	526
19	1901 - Job: 1901 - Stellarator Core Mngtt&Integr-COLE	191 - 191 - Stellarator Core Management & Oversight	Н	L	831	790	914
	1901 - Job: 1901 - Stellarator Core Mngtt&Integr-COLE	192 - 192 - Stellarator Core Integration & Analysis	Н	L	788	749	867
21	2101 - Job: 2101 - Fueling Systems-BLANCHARD	-	L	L	68	58	86
22	2201 - Job: 2201 - Vacuum Pumping Systems-BLANCHARD	-	М	L	172	155	198
31	3101 - Job: 3101 - Magnetic Diagnostics-STRATTON	MD3 - Rogowski Coils	Н	L	98	93	107
	3101 - Job: 3101 - Magnetic Diagnostics-STRATTON	MD4 - TF and PF Co-wound Loops	Н	L	75	71	82
	3101 - Job: 3101 - Magnetic Diagnostics-STRATTON	124U - T/C and Heater Tape Leads	Н	L	47	45	52
	3101 - Job: 3101 - Magnetic Diagnostics-STRATTON	124V - Flux loop junction boxes and spacer templates	Н	L	57	54	62
	3101 - Job: 3101 - Magnetic Diagnostics-STRATTON	VLPB - Voltage Loops & Protective Boxes	Н	L	14	14	16
36	3601 - Job: 3601 - Edge Divertor Diagnostics-STRATTON	-	Н	L	31	29	34
N	CSX Risk-Contingency Model - 7-28-07	page 2 of 3					07/30/07 10:19

WBS2	Job	WBS4	Maturity	Complexity	TOTAL	Low	<u>High</u>
38 3801 -	Job: 3801 - Electron Beam Mapping-STRATTON	-	М	М	263	224	329
39 3901 -	Job: 3901 - Diagnostics sys Integration-STRATTON	-	Н	L	133	126	146
41 4101 -	Job: 4101 - AC Power-RAMAKRISHNAN	-	FRO	DZEN	(104)	-104	-104
4101 -	Job: 4101 - AC Power-RAMAKRISHNAN	411 - 411 - Auxiliary AC Power Systems	Н	L	124	118	136
4101 -	Job: 4101 - AC Power-RAMAKRISHNAN	412 - 412 - Experimental AC Power Systems	Н	L	35	33	38
4301 -	Job: 4301 - DC Systems-RAMAKRISHNAN	431 - 431 - C-Site DC Systems	Н	L	603	573	663
44 4401 -	Job: 4401 - Control & Protection-RAMAKRISHNAN	441 - 441 - Electrical Interlocks	М	L	482	434	554
4401 -	Job: 4401 - Control & Protection-RAMAKRISHNAN	442 - 442 - Kirk Key Interlocks	М	L	85	77	98
4401 -	Job: 4401 - Control & Protection-RAMAKRISHNAN	443 - 443 - Real Time Control Systems	М	L	15	13	17
4401 -	Job: 4401 - Control & Protection-RAMAKRISHNAN	444 - 444 - Instrument Systems	М	L	220	198	253
4401 -	Job: 4401 - Control & Protection-RAMAKRISHNAN	445 - 445 - Coil Protection Systems	М	L	283	254	325
45 4501 -	Job: 4501 - Power Sys Dsn & Integr-RAMAKRISHNAN	451 - 451 - System Design & Interfaces	Н	L	215	204	237
4501 -	Job: 4501 - Power Sys Dsn & Integr-RAMAKRISHNAN	452 - 452 - Electrical Systems Support	Н	L	199	189	219
4501 -	Job: 4501 - Power Sys Dsn & Integr-RAMAKRISHNAN	453 - 453 - System Testing (PTP's)	Н	L	269	255	296
51 5101 -	Job: 5101 - Network and Fiber Infrastruct-SICHTA	-	М	L	151	136	173
52 5201 ·	Job: 5201 - I&C Systems-SICHTA	-	М	L	197	177	226
53 5301 -	Job: 5301 - Data Acquisition-SICHTA	-	М	L	164	148	189
54 5401 -	Job: 5401 - Facility Timing & SynchronSICHTA	-	М	М	205	174	256
55 5501 -	Job: 5501 - Real Time Control System-SICHTA	-	М	L	129	116	148
56 5601 -	Job: 5601 - Central Safety & Interlock Sys-SICHTA	-	L	М	222	178	311
58 5801 -	Job: 5801 - Central I&C Integr& Oversight-SICHTA	-	Н	L	69	66	76
61 6101 -	Job: 6101 - Water Systems-DUDEK	613 - 613 - Vacuum Pumping System	L	L	46	39	58
62 6201 -	Job: 6201 - Cryogenic Syst-GETTELFINGER	621 - 621 - LN2-LHe Supply System	L	М	88	70	123
6201 ·	Job: 6201 - Cryogenic Syst-GETTELFINGER	622 - 622 - LN2 Coil Cooling Supply	L	М	88	71	123
6201 ·	Job: 6201 - Cryogenic Syst-GETTELFINGER	623 - 623 - GN2 Cryostat Cooling System	L	М	479	383	670
63 6301 -	Job: 6301 - Utility Systems-DUDEK	-	L	L	105	89	131
64 6401 -	Job: 6401 - PFC/VV Htng/Cooling(bakeout)- KALISH	-	L	М	573	459	803
73 7301 -	Job: 7301 - Platform Design & Fab-PERRY	-	L	L	204	174	255
74 7401 ·	Job: 7401 - TC Prep & Mach Assy Planning-PERRY	A - Oversight and Supervision	L	М	1,666	1,333	2,332
7401 ·	Job: 7401 - TC Prep & Mach Assy Planning-PERRY	-	FRO	DZEN	(249)	-249	-249
75 7501 ·	Job: 7501 - Construction Support Crew-PERRY	S0P0 - General Assy Support	L	М	1,407	1,125	1,969
7503 ·	Job: 7503 - Machine Assembly (station 6)-PERRY	-	L	М	4,512	3,609	6,317
76 7601 ·	Job: 7601 - Tooling Design & Fabrication-PERRY	-	L	L	413	351	516
81 8101 -	Job: 8101 - Project Management & Control-NEILSON	RBLX - FY07 Rebaseline Exercise	FRO	DZEN	4	4	4
8101 -	Job: 8101 - Project Management & Control-NEILSON	-	Н	L	3,839	3,647	4,223
8102 -	Job: 8102 - NCSX MIE Management ORNL-LYON	-	H	L	499	474	549
82 8202 ·	Job: 8202 - Engr Mgmt & Sys Eng Support-REIERSEN	RBLX - FY07 Rebaseline Exercise	FRO	DZEN	30	30	30
8202 -	Job: 8202 - Engr Mgmt & Sys Eng Support-REIERSEN	-	Н	L	2,619	2,488	2,881
8203 -	Job: 8203 - Design Integration-BROWN	-	M	М	1,408	1,196	1,760
8204 -	Job: 8204 - Systems Analysis-BROOKS	-	M	М	1,154	981	1,442
8205 -	Job: 8205 - Dimensional Control Coordin-ELLIS	-	L	H	597	418	955
8210 -	Job: 8210 - FY07 Rebaseling tasks	RBLX - FY07 Rebaseline Exercise	FRO	DZEN	19	19	19
8215 -	Job: 8215 Plant Design	RBLX - FY07 Rebaseline Exercise	FRO	DZEN	121	121	121
85 8501 -	Job: 8501 - Integrated Systems Testing-GENTILE	-	Н	L	419	398	461
8501 -	Job: 8501 - Integrated Systems Testing-GENTILE	PROC - Startup Documentation	Н	L	346	329	381
89 8998 -	Job: 8998 - Allocations-STRYKOWSKY	-	Н	L	1,454	1,381	1,599
				ETC=	50,849	44,067	63,357
				Cost thru 4/30/07=	67,306	-13%	25%
				EAC=	118,155		

APPENDIX B

SCHEDULE UNCERTAINTY RANGES

NCSX Schedule Uncertainty Model

Duration Range

Schedule Activity	Base Duration (mos) on Critical <u>Path</u>	Estimate <u>Uncertainty</u>	Low	<u>High</u>	Adjusted <u>High</u>
CP and Near CP Activities					
Job 1421 - Modular Coil Interface Design	4.4	LM	3.54	6.20	6.20
Jobs 1806/1802-Field Period Assy station 2 specs, dwgs,procedures,training,prep.	1.4	HM	1.28	1.63	1.63
Job -1810 Field Period Assembly Stations 1,2,3					
Station 2 MC Sub-assy A1/B1/C1 and A2/B2/C2 (in parallel)	6.8	LH	4.73	10.82	6.80
Station 3 Assemble Mod Coils and VVSA FP#1	4.5	LH	3.15	7.20	4.50
Job - 1815 Field Period Assembly Station 5					
Station 5 Final Assembly FP#3	8.7	LM	6.93	12.12	8.70
Job 7503 Final Machine Assembly (Station 6)	18.5	LM	14.78	25.87	25.87
Job 8501 - Integrated System Testing	1.0	HL	0.95	1.10	1.10
	45.25		35.37	64.95	54.81

APPENDIX C

RISK MODEL INPUTS

		-		_		Schedu	le Impact
				Cost Im	pact (\$k)	(m	ios)
No.	Job	Risk Description	Likelihood of Occurrence ^a	Low CI	Hiah Cl	Low SI	Hiah SI
_					<u> </u>		
	1354	Additional trim coils may be required to					
1	7503	suppress field errors from n>1 modes	U	+ \$200	+ \$400	+ 0.00	+ 0.00
		TF vendor produces a non-compliant coil					
2	1361	requiring fabrication of an additional coil	VU	+ \$15	+ \$35	+ 0.00	+ 0.00
		PF vendor produces a non-compliant coil			• • •		
3	1352	requiring fabrication of an additional coil	VU	+ \$15	+ \$35	+ 0.00	+ 0.00
		Modular coll interface design needs to					
	4 4 0 4	change significantly from the baseline for		(\$400)		. 1 00	
4	1421	Unforeseen technical reasons	VU	(\$100)	+ \$600	+ 1.00	+ 2.00
		distortion, the welding time increases					
5	1/21	significantly above present allowance		т ¢О	± €600	+ 0 00	+ 2 00
	1421	Damage or loss of modular coil during VPI	0	- ψυ	- ψυυυ	+ 0.00	+ 2.00
		or testing requiring the conductor to be					
6	1451	stripped off and re-wound	U	+ \$400	+ \$450	+ 0.00	+2.00
		Failure of major piece of winding equipment				. 0100	. 2.00
		(e.g., motor, gear box, etc.) resulting in					
7	1451	extended downtime in a winding station	U	+ \$10	+ \$30	+ 0.00	+ 0.00
		"Back office" support for FPA and final					
	1810	assembly becomes a chronic bottleneck,					
8	7503	stretching out the time required to complete	VU	+ \$0	+ \$600	+ 0.00	+ 2.00
		Modular coil damaged during assembly					
9	1810	requiring significant rework to coil	VU	+ \$10	+ \$20	+ 0.00	+ 0.50
		VV surface component (coolant tube, flux					
		loop, or IC) damaged during FPA requiring	\ <u>,</u> ,,,	A 4 A	* ~~		0.70
10	1810	significant rework	VU	+ \$10	+ \$20	+ 0.00	+ 0.50

		-		_		Schedu	e Impact
			l ikalihaad of	Cost Im	pact (\$k)	(m	os)
No.	Job	Risk Description	Occurrence ^a	Low CI	High Cl	Low SI	High SI
	1010	Unacceptable distortion in a field period	\/L1			. 0.75	. 4.05
	1810	Field period damaged during loading	VU	+ \$25	+ ֆაა	+ 0.75	+ 1.25
		transport or unloading from TETR TC to					
12	1810	NCSX TC	NC				
		Multiple vacuum leaks during initial					
13	1815	pumpdown	NC				
		Insulation on TF/PF coil fails during initial					
14	7503	cooldown and testing requiring in situ repair	VU	+ \$50	+ \$150	+ 1.00	+ 2.00
		Insulation on TF/PF coll fails during initial					
45	7500	cooldown and testing requiring dismantling	NC				
15	7503		NC				
		Insulation on modular coil fails during initial					
16	7503	cooldown and testing requiring in situ repair	VU	+ \$50	+ \$150	+ 1.00	+ 2.00
		Insulation on modular coil fails during initial					
		cooldown and testing requiring stellarator					
17	7503	core disassembly	NC				
		Unanticipated problems with cryostat					
		penetrations (icing, excessive					
18	7503	condensation). May require warming up the	U	+ \$15	+ \$30	+ 0.25	+ 1.00
		Loss or prolonged unavailability of certain					
10		key personner from the project could					
19							
	1901	Mike Cole (ORNL)	VU	+ \$0	+ \$0	+ 0.00	+ 0.50

		-		Cost Im	pact (\$k)	Schedu (m	le Impact los)
No.	Job	Risk Description	Likelihood of Occurrence ^a	Low CI	High Cl	Low SI	High SI
	8203	Tom Brown (PPPL)	VU	+ \$0	+ \$0	+ 0.00	+ 0.50
	8204	Art Brooks (PPPL)	VU	+ \$0	+ \$0	+ 0.00	+ 0.50
	8205	Bob Ellis (PPPL)	VU	+ \$0	+ \$0	+ 0.00	+ 0.50
	1802	Mike Viola (PPPL)					
	7401	Erik Perry (PPPL)	VU	+ \$0	+ \$0	+ 0.00	+ 0.50
	1803	Assembly sled for final assembly is not					
20	7503	repeatable motion	U	+ \$25	+ \$75	+ 0.00	+ 0.00
		TC floor is not adequately rigid for present					
21	7503	metrology plan	VU	+ \$50	+ \$200	+ 0.00	+ 0.00
		Modular coils are shorted across toroidal					
22	1421	break between field periods causing	NC				
	7503		INC INC				
		GPP projects not completed in time to					
23	8101	support project needs	NC				
24	8501	Coils are hooked up with incorrect polarity	U				
		Ecolation of Stainlass Shoot and Incoral					
25	8101	higher than base escalation rates	VL	+ \$37	+ \$266	+ 0.00	+ 0.00

				Cost Im	pact (\$k)	Schedule Impac (mos)		
			Likelihood of			, ,	,	
No.	Job	Risk Description	Occurrence ^a	Low CI	High Cl	Low SI	High SI	
		Escalation of Copper higher than base			• • •			
26	8101	escalation rates	VL	+ \$11	+ \$81	+ 0.00	+ 0.00	
		Labor rates may be significantly lower/higher			• -••			
27	8101	than projected	L	(\$500)	+ \$500	(0.50)	+ 0.50	
	1810	Metrology equipment and general purpose						
	1815	tooling/ lifting equipment (e.g.cranes) not						
28	7503	available to support the schedule	U	+ \$0	+ \$150	+ 0.00	+ 0.50	
		No suitable PF coil vendor submits bid. PF						
29	1352	coils need to be built in-house.	U	+ \$0	+ \$300	+ 0.00	+ 0.00	
		Funding profile may not match assumptions						
		which in turn could impact cost and						
30	8101	schedule	U	+ \$0	+ \$0	(2.00)	+ 2.00	
		Overhead rates may change signficiantly						
		which in turn could impact cost and						
31	8101	schedule	U	(\$900)	+ \$0	(1.00)	+ 0.00	
^a V	L= Very	y Likely (P>80%), L=Likely (80%>P>40%), U=	Unlikley (40%>P	2>1 <u>0%), Vl</u>	J=Very Unl	ikely (P<	10%),	

NC=Non-credible (P<1%)

APPENDIX D

UNCERTAINTY MODEL RESULTS

Percentiles	Total ETC With Uncertainty Contingency	Total Schedule Duration	Schedule Mitigation Cost Adder
0%	52,808	40.19	6.94
5%	55,014	43.33	8.70
10%	55,413	44.13	24.02
15%	55,690	44.75	44.46
20%	55,938	45.22	62.57
25%	56,136	45.69	80.75
30%	56,326	46.11	97.53
35%	56,498	46.53	114.46
40%	56,660	46.96	131.68
45%	56,829	47.42	148.57
50%	57,000	47.90	163.93
55%	57,190	48.38	180.19
60%	57,375	48.89	197.62
65%	57,572	49.48	215.24
70%	57,772	50.10	234.96
75%	58,005	50.71	258.27
80%	58,263	51.40	283.53
85%	58,541	52.16	316.73
90%	58,885	53.13	355.28
95%	59,421	54.41	408.85
100%	61,862	58.67	637.15

APPENDIX E

RISK MODEL RESULTS

Percentiles	Risk Cost Contingency	Risk Schedule Contingency
0%	-498.49	-1.82
5%	-216.57	-0.40
10%	-94.19	-0.29
15%	0.00	-0.18
20%	65.58	-0.06
25%	110.56	0.00
30%	144.78	0.00
35%	178.54	0.00
40%	210.52	0.00
45%	242.43	0.00
50%	270.66	0.00
55%	304.60	0.08
60%	383.41	0.19
65%	486.13	0.31
70%	588.48	0.42
75%	718.08	0.93
80%	894.63	1.92
85%	1,085.93	2.76
90%	1,281.86	3.76
95%	1,530.11	6.85
100%	3,400.87	15.23

Risk Contingency Summary	
@90% Cost Risks	\$1,282
Cost Impact of Schedule	\$758
Total Risk Contingency	\$2,040

APPENDIX F

SCHEDULE CONTINGENCY COSTING BASES

Standing army calculation

WBS	JOB		Description	Cost/yr	Cost/mo.
	19	1901	Stellarator core management	\$185	\$15
	81	8101	PPPL Management	\$1,000	\$83
	81	8102	ORNL Management	\$158	\$13
	82	8202	Engineering mgt	\$550	\$46
	82	8203	Design Integration	\$98	\$8
	82	8204	Systems Analysis	\$0	\$0
	82	8205	Dimensional control	\$0	\$0
	82	8215	Plant Design	\$0	\$0
	89	8998	Allocations	\$430	<u>\$36</u>
					\$202

Second Shift oversight, support, cost dif

Crane support, fixture setup, misc support	1.2 fte	\$17
Field Supervision	1.0 fte	\$25
Metrology crews (task dependent)	n/a	\$0
Metrology engineer	.5 fte	\$16
Shift differntial (@ 5fte crew size)		<u>\$7</u>
		\$64

APPENDIX G

BASIS FOR SPREAD OF CONTINGENCY BY FISCAL YEAR

Major Contributors to Uncertainty Contingency

Spread of Dollars by Year								Weighted Contingency Spread by Year					
<u>Job</u>	<u>%</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>		<u>2007</u>	2008	2009	<u>2010</u>	<u>2011</u>	
* 7503 - Job: 7503 - Machin	38%	0%	0%	19%	81%	0%		0%	0%	7%	31%	0%	
A - Oversight and Superv	5%	0%	0%	35%	51%	14%		0%	0%	2%	3%	1%	
S0P0 - General Assy Suppo	6%	0%	0%	24%	57%	19%		0%	0%	1%	3%	1%	
* S4P1 - Station 5- Final FF	2%	0%	0%	100%	0%	0%		0%	0%	2%	0%	0%	
13P - PF Coil Fabrication	2%	0%	59%	39%	2%	0%		0%	1%	1%	0%	0%	
	54%							0%	0%	10%	37%	2%	
All Other	46% /	Assume s	spread equa	ally with none	e in 2007 an	d extra in 20	11		12%	12%	12%	12%	
Total Uncertainty Contingency Spead 12% 22% 49% 18%												18%	
				Uncertain	ty Conting	ency	8,391		973	1,844	4,108	1,510	
Risk Contingency Spread	Primary con	ntributor is	Labor Rate	e risk, so spr	ead as cons	stant % of ba	se costs		25%	25%	25%	25%	
				Risk Cont	ingency		1,282		320	320	320	320	
				Schedule	Contingen	cy all in 201	1					2,347	
				Total Con	tingency b	y Year	12,063		1,293	2,164	4,428	4,178	
							Conservative Pr	ojection	11% 20%	18% 25%	37% 30%	35% 25%	

APPENDIX H

CRYSTAL BALL® REPORT

Crystal Ball Report - Custom Simulation started on 7/27/2007 at 15:29:18 Simulation stopped on 7/27/2007 at 15:30:55

Run preferences:	
Number of trials run	10,000
Monte Carlo	
Random seed	
Precision control on	
Confidence level	95.00%
Run statistics:	
Total running time (sec)	96.78
Trials/second (average)	103
Random numbers per sec	19,838
Crystal Ball data:	
Assumptions	192
Correlations	31
Correlated groups	17
Decision variables	0
Forecasts	5

Forecasts

Worksheet: [NCSX Risk-Contingency Model - 7-27-07-play.xls]Estimate Uncertainty Range

Forecast: Total ETC With Uncertainty Contingency

Cell: L150

Summary:

Entire range is from 52,808 to 61,862 Base case is -500 After 10,000 trials, the std. error of the mean is 13

Statistics:	Forecast values
Trials	10,000
Mean	57,092
Median	57,000
Mode	
Standard Deviation	1,337
Variance	1,787,735
Skewness	0.2238
Kurtosis	2.74
Coeff. of Variability	0.0234
Minimum	52,808
Maximum	61,862
Range Width	9,054
Mean Std. Error	13

Forecast: Total ETC With Uncertainty Contingency (cont'd)

Percentiles:	Forecast values
0%	52,808
10%	55,413
20%	55,938
30%	56,326
40%	56,660
50%	57,000
60%	57,375
70%	57,772
80%	58,263
90%	58,885
100%	61,862

Cell: L150

Worksheet: [NCSX Risk-Contingency Model - 7-27-07-play.xls]Risk Model

Forecast: Risk Cost Contingency

Cell: Q41

Summary:

Entire range is from -498.49 to 3,400.87 Base case is 0.00 After 10,000 trials, the std. error of the mean is 5.34

Statistics:	Forecast values
Trials	10,000
Mean	450.79
Median	270.67
Mode	0.00
Standard Deviation	533.89
Variance	285,039.23
Skewness	1.09
Kurtosis	3.89
Coeff. of Variability	1.18
Minimum	-498.49
Maximum	3,400.87
Range Width	3,899.36
Mean Std. Error	5.34

Forecast: Risk Cost Contingency (cont'd)

Percentiles:	Forecast values
0%	-498.49
10%	-94.19
20%	65.58
30%	144.78
40%	210.52
50%	270.66
60%	383.41
70%	588.48
80%	894.63
90%	1,281.86
100%	3,400.87

Cell: Q41

Forecast: Risk Schedule Contingency

Summary: Entire range is from -1.82 to 15.23

Base case is 0.00 After 10,000 trials, the std. error of the mean is 0.02

Statistics:	Forecast values
Trials	10,000
Mean	1.03
Median	0.00
Mode	0.00
Standard Deviation	2.25
Variance	5.04
Skewness	2.59
Kurtosis	9.90
Coeff. of Variability	2.18
Minimum	-1.82
Maximum	15.23
Range Width	17.05
Mean Std. Error	0.02

Forecast: Risk Schedule Contingency (cont'd)

Percentiles:	Forecast values
0%	-1.82
10%	-0.29
20%	-0.06
30%	0.00
40%	0.00
50%	0.00
60%	0.19
70%	0.42
80%	1.92
90%	3.76
100%	15.23

Cell: R41

Worksheet: [NCSX Risk-Contingency Model - 7-27-07-play.xls]Schedule Ranges

Forecast: Schedule Mitigation Cost Adder

Cell: J16

Summary:

Entire range is from 6.94 to 637.15 Base case is 0.00 After 10,000 trials, the std. error of the mean is 1.23

Statistics:	Forecast values
Trials	10,000
Mean	179.25
Median	163.95
Mode	8.70
Standard Deviation	122.88
Variance	15,100.14
Skewness	0.6040
Kurtosis	2.78
Coeff. of Variability	0.6855
Minimum	6.94
Maximum	637.15
Range Width	630.22
Mean Std. Error	1.23
Forecast: Schedule Mitigation Cost Adder (cont'd)

Percentiles:	Forecast values
0%	6.94
10%	24.02
20%	62.57
30%	97.53
40%	131.68
50%	163.93
60%	197.62
70%	234.96
80%	283.53
90%	355.28
100%	637.15

Cell: J16

Forecast: Total Schedule Duration

Cell: I16

Summary:

Entire range is from 40.19 to 58.67 Base case is 0.00 After 10,000 trials, the std. error of the mean is 0.03

Statistics:	Forecast values
Trials	10,000
Mean	48.29
Median	47.90
Mode	
Standard Deviation	3.40
Variance	11.53
Skewness	0.3611
Kurtosis	2.46
Coeff. of Variability	0.0703
Minimum	40.19
Maximum	58.67
Range Width	18.47
Mean Std. Error	0.03

Forecast: Total Schedule Duration (cont'd)

Percentiles:	Forecast values
0%	40.19
10%	44.13
20%	45.22
30%	46.11
40%	46.96
50%	47.90
60%	48.89
70%	50.10
80%	51.40
90%	53.13
100%	58.67

End of Forecasts

Cell: I16

Assumptions

Worksheet: [NCSX Risk-Contingency Model - 7-27-07-play.xls]Estimate Uncertainty Range

Assumption: 1 - Station 1 Post VPI

Triangular distribution with parameters:

Minimum	173	(=J49)
Likeliest	203	(=l49)
80%	254	(=K49)

Assumption: 1.00 - 1.00-VV Prep Station

Triangular distribution with parameters:

Minimum	14	(=J68)
Likeliest	17	(=l68)
80%	21	(=K68)

Assumption: 122 - Thermal Insulation

Triangular distribution with parameters:

Minimum	209	(=J5)
Likeliest	220	(=l5)
80%	242	(=K5)

Cell: L49

Cell: L68

Assumption: 122 - Thermal Insulation (cont'd)

Cell: L5

Cell: L3

Assumption: 124P - VV Personnel Access Port & Lateral sprts

Triangular distribution with parameters:

Minimum Likeliest 80%			80 84 92	(=J3) (=I3) (=K3)
	sability	124P-WPersonnelAc	cess Port 8	Lateral sprts

Assumption: 124T - Heater Tape for Port Stub

Triangular distribution with parameters:

Minimum	19	(=J6)
Likeliest	20	(=16)
80%	22	(=K6)

124T - Heater Tape for Port Stub

Assumption: 124U - T/C and Heater Tape Leads

Triangular distribution with parameters:

Minimum	45	(=J100)
Likeliest	47	(=l100)
80%	52	(=K100)

Cell: L6

Assumption: 124U - T/C and Heater Tape Leads (cont'd)

Cell: L100

Assumption: 124U - T/C and Heater Tape Leads

Triangular distribution with parameters:

Minimum	35	(=J7)
Likeliest	37	(=l7)
80%	41	(=K7)

Assumption: 124V - Flux loop junction boxes and spacer templates

Triangular distribution with parameters:

Minimum	·	12	(=J8)
Likeliest		12	(=l8)
80%		14	(=K8)

Assumption: 124V - Flux loop junction boxes and spacer templates

Cell: L101

Triangular distribution with parameters:

Minimum	54	(=J101)
Likeliest	57	(=l101)
80%	62	(=K101)

Cell: L7

Assumption: 124V - Flux loop junction boxes and spacer templates (cont'd)

Assumption: 125 - VV Local I&C

Triangular distribution with parameters:

Minimum	33	(=J4)
Likeliest	34	(=l4)
80%	38	(=K4)

Triangular distribution with parameters:

Assumption: 130 - TF Title III and Fabrication Oversight

5		
Minimum	191	(=J16)
Likeliest	213	(=l16)
80%	245	(=K16)

Assumption: 1302 - Job: 1302 - PF Design -KALISH

Triangular distribution with parameters:

Minimum	215	(=J11)
Likeliest	253	(=l11)
80%	316	(=K11)

Cell: L16

Cell: L4

Cell: L11

130 - TF Title III and Fabrication Oversight

125 - W Local I&C

1302 - Job: 1302 - PF Design -KALISH

Assumption: 1302 - Job: 1302 - PF Design -KALISH (cont'd)

Assumption: 132A - CS Support Structure

Triangular distribution with parameters:

Minimum	320	(=J13)
Likeliest	337	(=l13)
80%	371	(=K13)

Prohabili

Assumption: 133	- Trim Coils
-----------------	--------------

Triangular	distribution	with	parameters:	
mangalai	aloundation	*****	purumotoro.	

Minimum	138	(=J14)
Likeliest	162	(=l14)
80%	202	(=K14)

Assumption: 134 - TF/PF Loacl I&C

Triangular distribution with parameters:

Minimum	65	(=J15)
Likeliest	72	(=l15)
80%	83	(=K15)

133 - Trim Coils

Cell: L13

Cell: L11

Cell: L15

Assumption: 134 - TF/PF Loacl I&C (cont'd)

Assumption: 13Y - TF Fabrication Contract

Triangular distribution with parameters:

Triangular distribution with parameters:

Minimum

Likeliest

80%

744	(=J17)
826	(=l17)
950	(=K17)
	744 826 950

Page 17

134 - TF/PF Load IBC

74 76 70 00 02 04 06

Assumption: 13P - PF Coil Fabrication

Triangular distribution with parameters:

Minimum	1,385	(=J12)
Likeliest	1,630	(=I12)
80%	2,037	(=K12)
	13P - PF Coil Fabric	ation

280

350

489

(=J21)

(=l21)

(=K21)

Assumption: 1408 - Job: 1408 - MC Winding Supplies-CHRZANOWSKI

Cell: L21

Cell: L12

Cell: L17

Assumption: 1408 - Job: 1408 - MC Winding Supplies-CHRZANOWSKI (cont'd) Cell: L21

Assumption: 1421 - Job: 1421 - Mod Coil Interface Design-WILLIAMSON Cell: L29

 Triangular distribution with parameters:

 Minimum
 218
 (=J29)

 Likeliest
 273
 (=I29)

 80%
 382
 (=K29)

Assumption: 142A - Outboard Interface

Triangular distribution with parameters:

Minimum	20	(=J28)
Likeliest	25	(=128)
80%	35	(=K28)

142A - Outboard Interface

Assumption: 142B - Outboard Interface-Bolted Joint Tests-Tension

Cell: L30

Cell: L28

Minimum	58	(=J30)
Likeliest	72	(=I30)
80%	101	(=K30)

Assumption: 142B - Outboard Interface-Bolted Joint Tests-Tension (cont'd)

Triangular distribution with parameters:

Minimum	95	(=J32)
Likeliest	118	(=132)
80%	165	(=K32)

142D - Outboard Interface-Friction

Assumption: 142E - Inboard Interface-Design

Triangular distribution with parameters:

Minimum	138	(=J33)
Likeliest	173	(=l33)
80%	242	(=K33)

Cell: L33

Page 19

Cell: L30

Assumption: 142E - Inboard Interface-Design (cont'd)

Triangular distribution with parameters:

Assumption: 142F - Inboard Interface-AB/BC/AA

riangular distribution with parameters:			
Minimum	75	(=J34)	
Likeliest	94	(=l34)	
80%	131	(=K34)	

Triangular distribution with parameters:

Minimum	190	(=J35)
Likeliest	237	(=135)
80%	332	(=K35)

Assumption: 142H - Weld Access test

Triangular distribution with parameters:

Minimum	83	(=J36)
Likeliest	104	(=l36)
80%	146	(=K36)

142G - Inboard Interface-CC

Cell: L33

Cell: L34

Assumption: 142H - Weld Access test (cont'd)

Cell: L36

Cell: L37

Assumption: 142J - Overall MC Interface

Triangular distribution with parameters:

Minimum Likeliest 80%			112 140 196	(=J37) (=l37) (=K37)
	Probability	142.J - Over	all MC Interfa	Ce

Assumption: 1431 - Job: 1431 - Mod. Coil Interface Hardware-DUDEK

Cell: L38

Triangular distribution with parameters:

Minimum	65	(=J38)
Likeliest	77	(=I38)
80%	96	(=K38)

Assumption: 1501 - Job: 1501 - Coil Structures Design-DAHLGREN

Cell: L53

Minimum	168	(=J53)
Likeliest	187	(=l53)
80%	215	(=K53)

Assumption: 1501 - Job: 1501 - Coil Structures Design-DAHLGREN (cont'd) Cell: L53

Assumption: 161 - 161 - LN2 Distribution

Triangular distribution with parameters:

0	•		
Minimum		322	(=J56)
Likeliest		339	(=l56)
80%		373	(=K56)

Triangular distribution with parameters:

Minimum	455	(=J57)
Likeliest	479	(=l57)
80%	527	(=K57)

Triangular distribution with parameters: Minimum 968 (=J54) Likeliest 1,076 (=I54) 80% 1,237 (=K54)

Assumption: 1550 - Job: 1550 - Coil Struct. Procurement -DAHLGREN

1,000 1,000 1,100 1,200 1,200 1,200 1,200 1,200 1,200 1,000

161 - 161 - LN2 Distribution

Assumption: 162 - 162 - Electrical Leads (cont'd)

Cell: L57

Cell: L58

Assumption: 163 - 163 - Coil Protection System

Triangular distribution with parameters:

	-			
		163 - 163 - Coi	Protection S	System
80%			42	(=K58)
Likeliest			38	(=l58)
Minimum			36	(=J58)
0				

Assumption: 1701 - Job: 1701 - Cryostat Design-GETTLEFINGER

Cell: L59

Triangular distribution with parameters:

Minimum 1	66 (=J	59)
Likeliest 2	207 (=15	59) [́]
80% 2	290 (=K	(59)

Assumption: 1702 - Job: 1702 - Base Support Struct Design-DAHLGREN

Cell: L60

Minimum	147	(=J60)
Likeliest	163	(=l60)
80%	188	(=K60)

102 105 100 111 114

1751 - Job: 1751 - Cryostat Procurement-GETTLEFINGER

Assumption: 1702 - Job: 1702 - Base Support Struct Design-DAHLGREN (cont'd) Cell: L60

Triangular distribution with par	ameters:		
Minimum		81	(=J62)
Likeliest		90	(=l62)
80%		103	(=K62)
	172 - 172 - Ba	ise Support Str	ucture

Assumption: 1751 - Job: 1751 - Cryostat Procurement-GETTLEFINGER

Triangular distribution with parameters:

Minimum	309	(=J61)
Likeliest	325	(=l61)
80%	357	(=K61)

Assumption: 1806 - Job: 1806 - FP Assembly specs and drawings-COLE

Triangular distribution with parameters:

Minimum	150	(=J73)
Likeliest	176	(=l73)
80%	221	(=K73)

Cell: L61

Assumption: 1806 - Job: 1806 - FP Assembly specs and drawings-COLE (cont'd)

1806 - Job: 1806 - FP Assembly specs and drawings-COLE

Assumption: 192 - 192 - Stellarator Core Integration & Analysis

Triangular distribution with parameters:

Minimum

Likeliest

80%

Minimum	749	(=J95)
Likeliest	788	(=l95)
80%	867	(=K95)

Assumption: 1A - Station 1a/4 Casting Prep

Triangular distribution with parameters:

Minimum	211	(=J45)
Likeliest	248	(=l45)
80%	310	(=K45)

192 - 192 - Stellarator Core Integration & Analysis

Cell: L95

Cell: L73

Assumption: 2101 - Job: 2101 - Fueling Systems-BLANCHARD

Triangular distribution with parameters:

Minimum	58	(=J96)
Likeliest	68	(=l96)
80%	86	(=K96)

Assumption: 3 - Station 4-Winding Instl Chill Plates Tubing Bag

Triangular distribution with parameters:

Minimum	549	(=J47)
Likeliest	646	(=l47)
80%	807	(=K47)

Assumption: 3.00 - Station 3-Modular Coil to VVSA Assembly

Cell: L70

Minimum	44	(=J70)
Likeliest	52	(=I70)
80%	64	(=K70)

Minimum	224	(=J104)
Likeliest	263	(=l104)
80%	329	(=K104)

Assumption: 3801 - Job: 3801 - Electron Beam Mapping-STRATTON (cont'd)

3801 - Job: 3801 - Electron Beam Mapping-STRATTON

Assumption: 411 - 411 - Auxiliary AC Power Systems

Triangular distribution with parameters:

Minimum

Likeliest

80%

Minimum	118	(=J107)
Likeliest	124	(=l107)
80%	136	(=K107)

Triangular distribution	with	parameters:
-------------------------	------	-------------

Minimum	33	(=J108)
Likeliest	35	(=l108)
80%	38	(=K108)

411 - 411 - Auxiliary AC Power Systems

Cell: L108

Cell: L104

Cell: L105

Assumption: 412 - 412 - Experimental AC Power Systems (cont'd)

Assumption: 441 - 441 - Electrical Interlocks

Assumption: 431 - 431 - C-Site DC Systems

Minimum

Likeliest

80%

Triangular distribution with parameters:

0	•		
Minimum		434	(=J110)
Likeliest		482	(=l110)
80%		554	(=K110)

Triangular distribution with parameters:

Minimum	77	(=J111)
Likeliest	85	(=l111)
80%	98	(=K111)

Cell: L109

Cell: L108

Cell: L111

441 - 441 - Electrical Interlocks

Assumption: 442 - 442 - Kirk Key Interlocks (cont'd)

442 - 442 - Kirk Key Interlocks

Assumption: 443 - 443 - Real Time Control Systems

Triangular distribution with parameters:

Minimum	13	(=J112)
Likeliest	15	(=l112)
80%	17	(=K112)

Assumption: 444 - 444 - Instrument Systems

Triangular distribution with parameters:

Minimum	198	(=J113)
Likeliest	220	(=l113)
80%	253	(=K113)

444 - 444 - Instrument Systems

Assumption: 445 - 445 - Coil Protection Systems

Triangular distribution with parameters:

Minimum	254	(=J114)
Likeliest	283	(=l114)
80%	325	(=K114)

Cell: L112

Cell: L113

Cell: L114

Assumption: 445 - 445 - Coil Protection Systems (cont'd)

Assumption: 451 - 451 - System Design & Interfaces

Triangular distribution with parameters:

Minimum	204	(=J115)
Likeliest	215	(=l115)
80%	237	(=K115)

Assumption: 452	- 452 - Electrical	Systems	Support

Triangular distribution with parameters:

0		
Minimum	189	(=J116)
Likeliest	199	(=l116)
80%	219	(=K116)

Triangular distribution with parameters:

Minimum	255	(=J117)
Likeliest	269	(=l117)
80%	296	(=K117)

451 - 451 - System Design & Interfaces

452 - 452 - Electrical Systems Support

453 - 453 - System Testing (PTP's)

278

327

408

5.00 - Station 5-Final Field Period Assembly

(=J48)

(=l48)

(=K48)

Page 33

Assumption: 453 - 453 - System Testing (PTP's) (cont'd)

Triangular distribution with parameters:

Minimum	96	(=J71)
Likeliest	113	(=171)
80%	141	(=K71)

Assumption: 5.00 - Station 5-Final Field Period Assembly

Triangular distribution with parameters:

Minimum	168	(=J66)
Likeliest	186	(=l66)
80%	214	(=K66)

Minimum

Likeliest

80%

Triangular distribution with parameters:

Assumption: 5 - Station 5-VPI

Cell: L48

Cell: L71

Cell: L66

Assumption: 5301 - Job: 5301 - Data Acquisition-SICHTA

Triangular distribution with parameters:

Minimum	148	(=J120)
Likeliest	164	(=l120)
80%	189	(=K120)

Assumption: 5601 - Job: 5601 - Central Safety &Interlock Sys-SICHTA

Cell: L123

Minimum	178	(=J123)
Likeliest	222	(=l123)
80%	311	(=K123)

Assumption: 5601 - Job: 5601 - Central Safety &Interlock Sys-SICHTA (cont'd)

Assumption: 5801 - Job: 5801 - Central I&C Integr& Oversight-SICHTA Triangular distribution with parameters:

		5801 - Job: 5801 - Central I&C Integr& 0	Oversight-SICHTA
00%		76	(=r(124)
000/		76	(1/101)
Likel	iest	69	(=l124)
Minir	num	66	(=J124)

Assumption: 6.00 - 6.00-Final Machine Assembly

Triangular distribution with parameters:

Minimum	171	(=J67)
Likeliest	214	(=167)
80%	299	(=K67)

Assumption: 6.00 - 6.00-Final Machine Assembly

Triangular distribution with parameters:

Minimum	112	(=J72)
Likeliest	132	(=l72)
80%	164	(=K72)

Cell: L67

Cell: L72

6.00 - 6.00-Final Machine Assembly

Cell: L123

Assumption: 6.00 - 6.00-Final Machine Assembly (cont'd)

Assumption: 613 - 613 - Vacuum Pumping System

i hangular distribution with parame	eters:	
Minimum	39	(=J125)
Likeliest	46	(=l125)
80%	58	(=K125)

Assumption: 621	- 621 - LN2-LHe	Supply System
-----------------	-----------------	---------------

Triangular distribution with parameters:

Minimum	70	(=J126)
Likeliest	88	(=l126)
80%	123	(=K126)

Assumption: 622 - 622 - LN2 Coil Cooling Supply

Triangular distribution with parameters:

Minimum	71	(=J127)
Likeliest	88	(=l127)
80%	123	(=K127)

Cell: L126

Cell: L127

Cell: L125

6.00 - 6.00-Final Machine Assembly Proh 170 100

46 40 50 52 54 56 50 60 62 64 66 6

621 - 621 - LN2-LHe Supply System

622 - 622 - LN2 Coil Cooling Supply

Cell: L127

Triangular distribution with parameters:

Assumption: 622 - 622 - LN2 Coil Cooling Supply (cont'd)

Minimum 459 (=J130))
Likeliest 573 (=I130)
80% 803 (=K130	0)

Assumption: 6401 - Job: 6401 - PFC/VV Htng/Cooling(bakeout)- KALISH (cont'd)

8401 - Job: 8401 - PFC/VV Htng/Cooling(bakeout)- KAUSH

Triangular distribution with parameters: Minimum Likeliest

LINEHESI	204	(=1)
80%	255	(=K

Assumption: 7503 - Job: 7503 - Machine Assembly (station 6)-PERRY

Triangular distribution with parameters:

M's's	0.000	
Minimum	3,609	(=J135)
Likeliest	4,512	(=l135)
80%	6,317	(=K135)

Assumption: 7601 - Job: 7601 - Tooling Design & Fabrication-PERRY

Triangular distribution with parameters:

Minimum	351	(=J136)
Likeliest	413	(=l136)
80%	516	(=K136)

7503 - Job: 7503 - Machine Assembly (station 6)-PERRY

Cell: L136

Cell: L135

Cell: L131

Assumption: 7601 - Job: 7601 - Tooling Design & Fabrication-PERRY (cont'd) Cell: L136

Assumption: 8101 - Job: 8101 - Project Management & Control-NEILSON Cell: L138

Triangular distribution with parameters:

Minimum Likeliest 80%			3 3 4	,647 ,839 ,223	(=J1 (=I1 (=K	38) 38) 138)
	Probability - Cobability 	- Job: 8101 -	Project M	anagement	& Control-NE	ELSON
		3,800	4,000	4,200	4,400	4,600

Assumption: 8102 - Job: 8102 - NCSX MIE Management ORNL-LYON

Cell: L139

Triangular distribution with parameters:

Minimum	474	(=J139)
Likeliest	499	(=l139)
80%	549	(=K139)

Assumption: 8202 - Job: 8202 - Engr Mgmt & Sys Eng Support-REIERSEN

Cell: L141

Minimum	2,488	(=J141)
Likeliest	2,619	(=l141)
80%	2,881	(=K141)

Assumption: 8202 - Job: 8202 - Engr Mgmt & Sys Eng Support-REIERSEN (cont'd) Cell: L141

Assumption: 8203 - Job: 8203 - Design Integration-BROWN

Triangular distribution with parameters:

Minimum	1,196	5 (=J142)
Likellest	1,400) (=I14Z)
80%	1,760) (=K142)
	8203 - Job: 8203 - Design Inte	gration-BROWN

1,200 1,000 1,000 1,000 1,000 1,000 2,000 2,100

Assumption: 8204 - Job: 8204 - Systems Analysis-BROOKS

Triangular distribution with parameters:

Minimum	981	(=J143)
Likeliest	1,154	(=l143)
80%	1,442	(=K143)

Assumption: 8205 - Job: 8205 - Dimensional Control Coordin-ELLIS

Cell: L144

Cell: L142

Cell: L143

Minimum	418	(=J144)
Likeliest	597	(=l144)
80%	955	(=K144)

Assumption: 8205 - Job: 8205 - Dimensional Control Coordin-ELLIS (cont'd) Cell: L144

8205 - Job: 8205 - Dimensional Control Coordin-ELLIS

419

461

8501 - Job: 8501 - Integrated Systems Testing-GENTILE

8998 - Job: 8998 - Allocations-STRYKOWSKY

Assumption: 8998 - Job: 8998 - Allocations-STRYKOWSKY

Triangular distribution with parameters:

Triangular distribution with parameters:

Minimum

Likeliest

80%

•	•		
Minimum		1,381	(=J149)
Likeliest		1,454	(=l149)
80%		1,599	(=K149)
80%		1,599	(=K149

Triangular distribution with parameters:

Minimum	1,789	(=J63)
Likeliest	1,988	(=l63)
80%	2,286	(=K63)

398 (=J147)

(=l147)

(=K147)

Cell: L147

Assumption: A - Oversight and Supervision (cont'd)

A - Oversight and Supervision

Assumption: A - Oversight and Supervision

Triangular distribution with parameters:

Minimum	1,333	(=J132)
Likeliest	1,666	(=1132)
80%	2,332	(=K132)

Assumption: BLAD - Bladders

Triangular distribution with parameters:

Minimum	14	(=J39)
Likeliest	16	(=139)
80%	21	(=K39)

Assumption: BUSH - Bushings

Triangular distribution with parameters:

Minimum	46	(=J40)
Likeliest	54	(=l40)
80%	68	(=K40)

Cell: L40

Cell: L132

Cell: L39

BUSH - Bushings

63 66 69 72 75

Assumption: BUSH - Bushings (cont'd)

Triangular distribution with parameters:

Assumption: LABR - LOE Oversight & Supervision

731	(=J50)	
860	(=l50)	
1,075	(=K50)	
	731 860 1,075	731 (=J50) 860 (=I50) 1,075 (=K50)

MCDB - Clamp hardware modifications

Assumption: MCDB - Clamp hardware modifications

Triangular distribution with parameters:

Minimum	6	(=J23)
Likeliest	8	(=l23)
80%	11	(=K23)

Triangular distribution with parameters:

Minimum	19	(=J24)
Likeliest	23	(=l24)
80%	33	(=K24)

Cell: L50
Assumption: MCDC - Blanket thermal insulation (cont'd)

Triangular distribution with parameters:

Minimum	61	(=J25)
Likeliest	76	(=l25)
80%	107	(=K25)

Assumption: MCDF - Analysis and closeout documentation
--

Triangular distribution with parameters:

Minimum	132	(=J26)
Likeliest	165	(=126)
80%	231	(=K26)

Assumption: MD3 - Rogowski Coils

Triangular distribution with parameters:

Minimum	93	(=J98)
Likeliest	98	(=l98)
80%	107	(=K98)

MCDE - Top level assy models/drawings

MCDF - Analysis and closeout documentation

Assumption: MCDE - Top level assy models/drawings

MCDC - Blanket thermal insulation

Cell: L25

Cell: L24

Assumption: MD3 - Rogowski Coils (cont'd)

Cell: L98

Cell: L99

Assumption: MD4 - TF and PF Co-wound Loops

Triangular distribution with parameters:

Minimum	•	71	(=J99)
LIKEIIEST		75	(=199)
80%		82	(=K99)

Assumption: PLCT - Punchlist- Coil Technicians

Triangular distribution with parameters:

Minimum	·	293	(=J52)
Likeliest		325	(=152)
80%		374	(=K52)

Assumption: PLTS - Punchlist Tech shop/RESA

Triangular distribution with parameters:

Minimum	158	(=J51)
Likeliest	176	(=l51)
80%	202	(=K51)

Cell: L52

Assumption: PLTS - Punchlist Tech shop/RESA (cont'd)

Assumption: PROC - Startup Documentation

Triangular distribution with parameters

Minimum	329	(=J148)
Likeliest	346	(=l148)
80%	381	(=K148)

Assumption: RBLX - FY07 Rebaseline Exercise
Triangular distribution with parameters:

nangular distribution with parameters.		
Minimum	6	(=J55)
Likeliest	6	(=l55)
80%	7	(=K55)

Triangular distribution with parameters:

Minimum	1,125	(=J134)
Likeliest	1,407	(=l134)
80%	1,969	(=K134)

PLTS - Punchlist Tech shopfRESA

PROC - Startup Documentation

RBLX - FY07 Rebaseline Exercise

Cell: L51

S0P0 - General Assy Support

2,000 2,200

Assumption: S0P0 - General Assy Support (cont'd)

Assumption: S0P0 - General Assy Support

Triangular distribution with parameters:

Minimum	2,630	(=J74)
Likeliest	2,922	(=174)
80%	3,361	(=K74)

Prohabil

Assumption: S1P1 - Station 1-VV Prep (hard surface components) FP#1

Triangular distribution with parameters:

0	•		
Minimum		118	(=J75)
Likeliest		132	(=l75)
80%		151	(=K75)

Correlated with:	Coefficient
S1P2 - Station 1- VV Prep (hrd surf cmpntsFP#2 (L76)	0.80
S1P3 - Station 1- VV Prep (hrd surf cmpntsFP#3 (L77)	0.80
S1SP - Station 1-Spool pieces (3) (spacers) (L78)	0.80

Cell: L134

Cell: L74

Assumption: S1P2 - Station 1- VV Prep (hrd surf cmpntsFP#2

Page 49

Triangular distribution with parameters:

Minimum Likeliest	122 136	(=J76) (=I76)
80%	156	(=K76)
	S1P2 - Station 1- VV Prep (hrd surf	cmpntsFP#2

S1SP - Station 1-Spool pieces (3) (spacers) (L78)	0.80
S1P1 - Station 1-VV Prep (hard surface components) FP#	0.80
S1P3 - Station 1- VV Prep (hrd surf cmpntsFP#3 (L77)	0.80

Assumption: S1P3 - Station 1- VV Prep

Triangular distribution with parameters:

Minimum	1	89	(=J77)
Likeliest		210	(=I77)
80%		241	(=K77)
	S1P3 - Station 1- W Prep	p (hrd surf	cmpntsFP#3

	190	200	210	220	230	240	250	260	270	
Correlated with:										Coefficient
										Coemcient
S1SP - Station 1-Spool piece	es (3)	(sp	bac	ers) (L	.78))			0.80
S1P1 - Station 1-VV Prep (h	ard su	ırfa	се	con	npo	ner	nts)	FF	? #′	0.80
S1P2 - Station 1- VV Prep (h	nrd su	rf ci	mpi	ntsF	FP#	¥2 (L76	5)		0.80

Assumption: S1SP - Station 1-Spool pieces (3) (spacers)

Triangular distribution with parameters:

28	(=J78)
31	(=l78)
36	(=K78)
	28 31 36

spacers) ace comp cmpntsFl o (hrd su	(L78) ponent: P#3 (L7 rf cmp	s) FP#′ 77) ontsFP#3	
:	189	(=J77)	
	210 241	(=I77) (=K77)	

Coefficient
0.80
0.80
0.80

Cell: L78

Cell: L77

Assumption: S1SP - Station 1-Spool pieces (3) (spacers) (cont'd)

Cell: L78

Correlated with:	Coefficient
S1P2 - Station 1- VV Prep (hrd surf cmpntsFP#2 (L76)	0.80
S1P3 - Station 1- VV Prep (hrd surf cmpntsFP#3 (L77)	0.80
S1P1 - Station 1-VV Prep (hard surface components) FP#	0.80

Assumption: S2P1 - Station 2-MC Sub Assy A1-B1-C1

Triangular distribution with parameters:

Minimum	112	(=J82)
Likeliest	160	(=l82)
80%	256	(=K82)

Correlated with:	Coefficient
S2P2 - Station 2-Modular Coil Subassembly-FP#2 (L84)	0.80
S2PZ - Station 2 MC Sub Assy A2-B2-C2 (L83)	0.80
S2P3 - Station 2-Modular Coil Subassembly-FP#3 (L85)	0.80

Assumption: S2P2 - Station 2-Modular Coil Subassembly-FP#2

Triangular distribution with parameters:

Minimum	196	(=J84)
Likeliest	280	(=l84)
80%	448	(=K84)

Cell: L82

Assumption: S2P2 - Station 2-Modular Coil Subassembly-FP#2 (cont'd)

Correlated with:	Coefficient
S2P1 - Station 2-MC Sub Assy A1-B1-C1 (L82)	0.80
S2P3 - Station 2-Modular Coil Subassembly-FP#3 (L85)	0.80
S2PZ - Station 2 MC Sub Assy A2-B2-C2 (L83)	0.80

Assumption: S2P3 - Station 2-Modular Coil Subassembly-FP#3

Cell: L85

Cell: L81

Triangular distribution with parameters:

Minimum	200	(=J85)
Likeliest	285	(=l85)
80%	456	(=K85)

Correlated with:	Coefficient
S2P2 - Station 2-Modular Coil Subassembly-FP#2 (L84)	0.80
S2PZ - Station 2 MC Sub Assy A2-B2-C2 (L83)	0.80
S2P1 - Station 2-MC Sub Assy A1-B1-C1 (L82)	0.80

Assumption: S2PM - Pre-Measuring and fitup checks

Triangular distribution with parameters:

•	•		
Minimum		119	(=J81)
Likeliest		169	(=l81)
80%		271	(=K81)

Assumption: S2PM - Pre-Measuring and fitup checks (cont'd)

Triangular distribution with parameters:

nanyulai ulsinbullon wilii para	ameters.		
Minimum		373	(=J79)
Likeliest		533	(=l79)
80%		853	(=K79)
	S2PR - Station	2 Trials & Deve	lopment

Assumption: S2PX - Setup

Triangular distribution with parameters:

Minimum	70	(=J80)
Likeliest	100	(=I80)
80%	161	(=K80)

Assumption: S2PZ - Station 2 MC Sub Assy A2-B2-C2

Triangular distribution with parameters:

Minimum	67	(=J83)
Likeliest	95	(=l83)
80%	153	(=K83)

Cell: L80

Cell: L83

Assumption: S2PR - Station 2 Trials & Development

S2PM - Pre-Measuring and fitup checks

S2PX - Setup

Cell: L81

Assumption: S2PZ - Station 2 MC Sub Assy A2-B2-C2 (cont'd)

Cell: L83

Correlated with:	Coefficient
S2P1 - Station 2-MC Sub Assy A1-B1-C1 (L82)	0.80
S2P3 - Station 2-Modular Coil Subassembly-FP#3 (L85)	0.80
S2P2 - Station 2-Modular Coil Subassembly-FP#2 (L84)	0.80

Assumption: S3P0 - Station 3 Setup/Preparations/General

Triangular distribution with parameters:127 (=J86)Minimum127 (=J86)Likeliest181 (=I86)80%290 (=K86)

Assumption: S3P1 - Station 3-Assemble Mod Coils and VVSA-FP#1

Cell: L87

Coefficient

Cell: L86

Triangular distribution	with parameters:	
Minimum	117	(=J87)
Likeliest	167	(=187)
80%	267	(=K87)
	S3P1 - Station 3-Assemble Mod Coils	and VVSA-FP#1

Correlated with:

S3P2 - Station 3-Assemble Mod Coils and VVSA-FP#2 (L8	0.80
S3P3 - Station 3-Assemble Mod Coils and VVSA-FP#3 (L8	0.80

Assumption: S3P2 - Station 3-Assemble Mod Coils and VVSA-FP#2

Cell: L88

Triangular distribution with para	ameters:	
Minimum	120	(=J88)
Likeliest	171	(=l88)
80%	274	(=K88)
	S3P2 - Station 3-Assemble Mod Coil	s and VVSA-FP#2

Correlated with:	Coefficient
S3P1 - Station 3-Assemble Mod Coils and VVSA-FP#1 (L8	0.80
S3P3 - Station 3-Assemble Mod Coils and VVSA-FP#3 (L8	0.80

Assumption: S3P3 - Station 3-Assemble Mod Coils and VVSA-FP#3

Cell: L89

Triangular distribution with parameters:

Minimum	121	(=J89)
Likeliest	173	(=l89)
80%	276	(=K89)

Correlated with:	Coefficient
S3P1 - Station 3-Assemble Mod Coils and VVSA-FP#1 (L8	0.80
S3P2 - Station 3-Assemble Mod Coils and VVSA-FP#2 (L8	0.80

Assumption: S4P0 - Setup/Preparations/General

Triangular distribution with parameters:

Minimum	179	(=J90)
Likeliest	223	(=l90)
80%	312	(=K90)

Correlated with:

orrelated with:	Coefficient
S4P3 - Station 5- Final FP Assy -FP#3 (in NCSX TC) (L93)	0.80
S4P1 - Station 5- Final FP Assy -FP#1 (in NCSX TC) (L91)	0.80

Assumption: S4P3 - Station 5- Final FP Assy -FP#3 (in NCSX TC)

Triangular distribution with parameters:

Minimum	·	300	(=J93)
Likeliest		376	(=l93)
80%		526	(=K93)

Correlated with:	
S4P2 - Station 5- Final FP Assy -FP#2 (in NCSX TC) (L92)	
S4P1 - Station 5- Final FP Assy -FP#1 (in NCSX TC) (L91)	

Assumption: SHMS - Shims-Outboard

Triangular distribution with parameters:

Minimum	118	(=J41)
Likeliest	139	(=l41)
80%	173	(=K41)

Assumption: SHMT - Shims-Inboard

Triangular distribution with parameters:

Minimum	16	(=J42)
Likeliest	19	(=l42)
80%	24	(=K42)

Cell: L41

Coefficient

0.80 0.80

Assumption: SHMU - Shims- C-C Joint

Triangular distribution with parameters:15 (=J43)Minimum17 (=I43)Likeliest17 (=I43)80%22 (=K43)

Assumption: STUD - Studs Washers Nuts

Triangular distribution with parameters:

Minimum	609	(=J44)
Likeliest	717	(=l44)
80%	896	(=K44)

Assumption: TCCO - Type C Design Closeout

Triangular distribution with parameters:

Minimum	6	(=J27)
Likeliest	7	(=l27)
80%	10	(=K27)

Cell: L27

Cell: L44

Assumption: VLPB - Voltage Loops & Protective Boxes

Page 58

Triangular distribution with parameters:

Minimum	. 1	4 (=J102)
Likeliest	1	4 (=I102)
80%	1	6 (=K102)
	VLPB - Voltage Loops &	Protective Boxes

14 14 15 15 15 16 16 16 17 17

0.0 (=B24)

Likely Event

Assumption: L

Uniform distribution with parameters:	
Minimum	0.40
Maximum	0.80

1.00 0.00 Åligestor 40 0.40

Assumption: Likely Event

Yes-No distribution with parameters:

Probability of Yes(1)

Uniform distribution with parameters:

Minimum	0.00
Maximum	0.01

Cell: C24

Cell: B25

Cell: B24

Assumption: Non-Credible Event Cell: C25 Yes-No distribution with parameters: Probability of Yes(1) 0.0 (=B25) Non-Credible Event 1.00 0.00 <u>}</u> 0.60 · Ê 0.40 0.20 Assumption: U Cell: B26 Uniform distribution with parameters: U Minimum 0.10 Maximum 0.40 Probability 0.15 0.10 0.21 0.24 0.27 0.30 0.33 0.36 **Assumption: Unlikely Event** Cell: C26 Yes-No distribution with parameters: Probability of Yes(1) 0.0 (=B26) Unlikely Event 1.00 0.00 Probability 66 0.20 0.00 Assumption: Very Likely Event Cell: C27

Yes-No distribution with parameters: Probability of Yes(1)

0.0 (=B27)

Assumption: Very Unlikely Event

Cell: C28

Yes-No distribution with parameters:

Probability of Yes(1)

0.0 (=B28)

Assumption: VL

Cell: B27

Uniform distribution with parameters:	
Minimum	

Minimum	0.80
Maximum	1.00

Assumption: VU

Cell: B28

Cell: N4

Uniform distribution with parameters:	
Minimum	0.01
Maximum	0.10

Worksheet: [NCSX Risk-Contingency Model - 7-27-07-play.xls]Risk Model

Assumption: Risk 1 - Additional Trim Coil - Cost

Uniform distribution with parameters:

Minimum	-+ 200.00	(=l4)
Maximum	-+ 400.00	(=J4)

Assumption: Risk 19B - Brown - Schedule

Uniform distribution with parameters:

Assumption: Risk 19C - Brooks - Schedule

Uniform distribution with parameters:

Iviinimum	
Maximum	

Minimum

Maximum

Assumption:	Risk	19D	- Ellis	-Schedule
-------------	------	-----	---------	-----------

Uniform distribution with parameters:	
Minimum	

Maximum

Uniform distribution with parameters:

Minimum	0.00	(=K27)
Maximum	0.50	(=L27)

Probability

0.00

0.50

Risk 19D - Ellis - Schedule

0.00 (=K25)

(=K26)

(=L26)

Cell: O26

Cell: O27

Cell: O25

Cell: O24

Risk 19E - Viola/Perry - Schedule

Assumption: Risk 19E - Viola/Perry - Schedule (cont'd)

Probability Assumption: Risk 2 - TF Vendor - Cost Cell: N5 Uniform distribution with parameters: Minimum -+ 15.00 (=I5) Maximum -+ 35.00 (=J5) Risk 2 - TF Vendor - Cost Probability -+10.00 -+21.00 -+24.00 -+27.00 -+30.00 -+30.00 Assumption: Risk 20 - Assy Sled - Cost Uniform distribution with parameters: Minimum -+ 25.00 (=l28) Maximum -+ 75.00 (=J28) Risk 20 - Assy Sled - Cost Probability Assumption: Risk 21 - TC Floor - Cost Uniform distribution with parameters: Minimum (=l29) -+ 50.00 Maximum -+ 200.00 (=J29)

Cell: O27

Cell: N28

Cell: N29

Assumption: Risk 21 - TC Floor - Cost (cont'd)

Risk 21 - TC Floor - Cost

Assumption: Risk 25 - SS/Inconel Escalation

Uniform distribution with parameters: Minimum

Maximum

	-+ 37.00 -+ 266.16	(=I33) (=J33)
-	Risk 25 - SS/Inconel Esca	lation

-+ 120.00 -+ 160.00 -+ 200.00 -+ 240.00

-+ 50.00

-+ 60.00 -+ 70.00

Uniform distribution with parameters:

Minimum Maximum		-+ 11.00 -+ 81.00	(=l34) (=.l34)
		Risk 28 - Copper Escala	tion
	aity		

Probability

Assumption: Risk 27 - Labor Rates - Cost

Uniform distribution with parameters:

Minimum	(500.00)	(=l35)
Maximum	-+ 500.00	(=J35)

Cell: N33

Cell: N34

Cell: N35

Cell: N29

Correlated with:

Risk 28 - Metrology Equip - Schedule (O36)

Coefficient 0.90

Assumption: Risk 28 - Metrology Equip - Schedule Cell: O36 Uniform distribution with parameters: 0.00 Minimum (=K36) Maximum 0.50 (=L36) Risk 28 - Metrology Equip - Schedule Probability Correlated with: Coefficient Risk 28 - Metrology Equip - Cost (N36) 0.90 Assumption: Risk 29 - No PF Coil Vendor - Cost Cell: N37 Uniform distribution with parameters: Minimum -+ 0.00 (=137) Maximum -+ 300.00 (=J37) Risk 29 - No PF Coil Vendor - Cost Probability -+ \$0.00 -+ 100.00 -+ 1\$0.00 -+ 200.00 -+ 2\$0.00 -+

Assumption: Risk 3 - PF Vendor - Cost

Uniform distribution with parameters:

Minimum	-+ 15.00	(=l6)
Maximum	-+ 35.00	(=J6)

Cell: N6

-2.00 (=K38)

(=L38)

2.00

Risk 30 - Funding - Schedule

Assumption: Risk 30 - Funding - Schedule

Uniform distribution with parameters:

Minimum

Maximum

Uniform of	distribution	with para	ameters:
------------	--------------	-----------	----------

Minimum	-1.00	(=K39)
Maximum	0.00	(=L39)
	Risk 31 - OH Rates - Schedule	

Correlated with: Risk 31 - OH Rates - Cost (N39) Coefficient 1.00

1.00

Cell: N39

Cell: O39

Job 1421 - Modular Coil Interface Design

	200 400 440 400 520 500 640	0.00 7.20
Assumption: Job 7503 Final Ma	achine Assembly (Station	6) Cell: H
Chris Gruber: 90% Correlation with Estima	te Probability Profile	
Triangular distribution with par	ameters:	
Minimum	14.78 (=E	513)
Likeliest	18.48 (=C	213)
90%	25.87 (=F	-13)
	16:00 19:00 20:00 24:00 26:00 20	.00 30.00
Assumption: Job 8501 - Integra	ated System Testing	Cell: H
Triangular distribution with par	ameters:	
Minimum	0.95 (=E	514)
Likeliest	1.00 (=0	214)
90%	1.10 (=F	-14)
	Job 8501 - Integrated System Testing	

Assumption: Job 1421 - Modular Coil Interface Design (cont'd)

H13

Cell: H6

H14

Assumption: Jobs 1806/1802-Field Period Assy station 2 specs, dwgs,procedures,traiGirlg,H7

Chris Gruber: Independent of Estimate Uncertainty

Triangular distribution with parameters:

Minimum	1.28	(=E7)
Likeliest	1.42	(=C7)
90%	1.63	(=F7)

Assumption: Station 2 MC Sub-assy A1/B1/C1 and A2/B2/C2 (in parallel)

Cell: H9

Chris Gruber: 90% Correlation with Estimate Probability Profile

Triangular distribution with parameters:

Minimum	4.73	(=E9)
Likeliest	6.76	(=C9)
90%	10.82	(=F9)

Assumption: Station 3 Assemble Mod Coils and VVSA FP#1

Chris Gruber: 90% Correlation with Estimate Probability Profile

Triangular distribution with parameters:

Minimum	3.15	(=E10)
Likeliest	4.50	(=C10)
90%	7.20	(=F10)

Cell: H10

Assumption: Station 3 Assemble Mod Coils and VVSA FP#1 (cont'd)

Cell: H10

Assumption: Station 5 Final Assembly FP#3

Chris Gruber:

90% Correlation with Estimate Probability Profile

Triangular distribution with parameters:

Minimum	6.93	(=E12)
Likeliest	8.66	(=C12)
90%	12.12	(=F12)

End of Assumptions

Cell: H12