

Onsite Fabrication Overview

L. Dudek

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory

Office of Science Project Review Princeton Plasma Physics Laboratory Princeton, NJ November 2, 2005

Outline

- Organization
- NCSX Manufacturing Facility Status
- Plans for FY06
- Facility Operations Plan
- Make Buy Decisions
- Summary

Fabrication Organization

Plus additional support from FOM Division Tech Pool

Fabrication Facility Floor Plan

FPA Fixture Schedule

- 5 stations / fixtures are planned for FPA
- Stage I fixture to arrive in 12/2005

Activity Name	Start Date	Finish Date	FY 2006											FY 2007					
			0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F
VV Prep Fixture Design	05-Jul	05-Oct																	
Half Period Assembly Fixture Design	24-Oct	09-Jan	4																
MC Installation Fixture Design	10-Oct	08-Mar						-											
TF Half Period Assembly Design	23-Jan	II-Apr																	
Final FP Assembly Design	06-Mar	l I -Jul										-							
VV Prep Fixture Fab	05-Oct	05-Dec																	
Half Period Assembly Fixture Fab	10-Jan	06-Jun																	
MC Installation Fixture Fab	26-Apr	l I -Jan																	
Final FP Assembly Fixture and Platform Fab	I 2-Jul	10-Jan																	
TF Half Period Assembly Fab	09-Oct	3 I -Jan																	
			0	N	D	J	F	M	A	M	J	J	A	S	0	N	D	J	F

Facility Development Plans for FY06

- Field Period Assembly:
 - Lead technician assigned to begin preparations, staffing to fill remaining positions identified
 - Complete Manufacturing Facility Operations Plan, FPA MIT/QA Plan, & VV Prep Procedure
 - Procure and install VV assembly Fixture by December
 - * First VV segment scheduled to arrive 1/06

Facility Development Plans for FY06

- Field Period Assembly (contd.):
 - Complete designs, begin procurements for
 - * Half Period Asm Fixture
 - * MC Installation Fixture
 - * Final FP Assembly Fixture
 - Support Field Period Assembly Tooling design activities
 - * Complex fixtures are expensive
 - Find a simpler / less expensive way to perform the same function
- Coil Winding
 - Complete TF Winding Fixture 12/05

Make vs Buy Decisions

- The final make vs buy decision for smaller components and tooling is made at the time approved drawings are available
- Bias is to go outside to take advantage of the wealth of U.S. industrial capacity
- Factors affecting the decision are
 - Cost
 - Complexity of the work
 - Availability of people resources
 - Prior experience with industry on similar work
 - Level of documentation available
 - Lead time vs project schedule
 - What's the best value

Facility Operations

- Safety is an integral part of every activity performed in the area
 - ACC review of facilities before operations
 - Job specific training (Hazard Awareness, GET, Rad Safety, Haz Comm, etc)
 - Job Hazard Analysis
 - Regular Safety Meetings
 - Daily Walkthrus by Industrial Hygiene
 - Daily Walkthrus by management
 - Prejob / Post Job Briefs

Facility Operations

- Quality Assurance
 - Supervision maintains a close working relationship with QC
 - Procedures requiring independent review use QC approval
 - Welding operations are 100% inspected
 - Critical lifts require special procedures and 100% QC review
- Cost and Schedule Control
 - Project level schedules are broken down to daily work schedules with detailed work assignments
 - * 2 week look ahead
 - * Crew knows exactly what they're working on
 - * Tuned further on a weekly / daily basis
 - Weekly rollover meetings
 - Start of shift meeting > 8 am Construction > 8:30 Meeting

Short Term Schedule

Date	Description	Shft	Crew
	WEEK OF OCTOBER 17TH.		
17-Oct-05	Complete metrology measurements	1st.	S. Raftopoulos (lead); M. Hause; E. Gilsenan
	Cut TRC using Wach's saw [Job 1409]	1st.	E. Kearns; R. Tucker jr.
	Begin stud welding activities	2nd.	M. Anderson (lead); F. Terlitz; D. Mosier
18-Oct-05	Stud welding activitries	1st.	E. Kearns(lead); M. Hause; E. Gilsenan
	Cut TRC using Wach's saw [Job 1409]	1st.	R. Tucker jr.; J. Benchoff
	Stud welding activitries	2nd.	M. Anderson (lead); F. Terlitz; D. Mosier
19-Oct-05	Tig weld nuts and studs	1st.	M. Hause (Lead);F. Simmons; E. Gilsenan
	Cut TRC using Wach's saw	1st.	R. Tucker jr.; J. Benchoff
	Miscellaneous- Ground wrap preparation		E. Kearns
	Clean casting/ complete misc. activities	2nd.	M. Anderson (lead); F. Terlitz; D. Mosier
20-Oct-05	Transfer C1 from station 1b to station 2	1st.	E. Kearns; M. Hause; E. Gilsenan; M. Fernandez; F. Simmons
	Complete adjustments in the station 2 turning fixture	1st.	E. Kearns; M. Hause; E. Gilsenan
	Begin lead block and terminal installation	2nd.	M. Anderson (lead); F. Terlitz; D. Mosier
21-Oct-05	Complete lead block and terminal installation	1st.	E. Kearns; M. Hause; E. Gilsenan
	Begin installation of cladding	2nd.	M. Anderson (lead); F. Terlitz; D. Mosier

Facility Operations

- Risk Management
 - Establishing "production mode" of operations. Working to achieve learning-curve efficiency improvements over 18 coils
 - * Anticipate production problems
 - * Daily debriefs and shift turnover meetings
 - * Simplifying assembly tools, improve fixtures as need arises
 - * Encourage "thinking" while working, keep them motivated, morale high
 - * I will ensure that NCSX fabrication receives the appropriate priority relative to other lab work
 - Implement systematic lessons-learned process to improve from one cycle to the next

Process Improvement

- Value Improvement Proposals (VIP)
 - Team members are encouraged to submit suggestions for process improvement
 - Suggestions are evaluated for improvement to the product, process, procedure, quality and safety
- Spot Awards have been given to winding techs for suggestions that resulted in significant cost savings to the project
- Examples of ideas adopted:
 - Stud Welding on both sides of the coil
 - Routing of the coil casting through the fabrication facility
 - Switch from "french toast" style VPI shell to "cotton candy"
 - * 50% reduction in labor

Summary

- The NCSX Winding Facility is up and running
- Plans for the start of the FPA Facility are in place
- First FPA fixture design completed > procurement
- Plans and methods to improve fabrication productivity have been developed