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Plasma Configuration Design of the
U.S. National Compact Stellarator
Experiment (NCSX)

I. Introduction.

— Quasi-axisymmetric stellarators.

— Comparison with other stellarators and
with tokamaks.

II. A QA configuration and its physics properties.

— Ballooning.
— Kink.
— Vertical stability.

— Confinement.
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The NCSX Design is Based on the
Quasi-Axisymmetric Approach to
Producing Good Drift Trajectories

Two Methods are known for improving drift tra-
jectories:

e Quasi-omnigeneity (W7X, QOS).

o Quasi-symmetry.

Quasi-Symmetry

drift trajectories: Equations in Boozer coordinates
depend only on B?, not on components of B.
(Boozer, 1983)

Quasi-symmetric field: B? = B*(¥,0 — N¢) has
helical symmetry or axisymmetry. (Nihrenberg
& Zille, 1988)

Quasi-axisymmetry: In Boozer coordinates, dritt
trajectories look same as in axisymmetry. (Niihrenberg,
Lotz & Gori)

Garabedian: Quasi-axisymmetric configurations nat-
urally emerge in study of increasingly compact quasi-
symmetric configurations. Attractive modular coils.
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Quasi-Axisymmetric Stellarators

Comparison with W7X and quasi-helical stel-
larators: Bootstrap Current

quasi-helical stellarators: relatively small compareld
to tokamak; opposes external transform.

WT7X: bootstrap current (as well as Pfirsch-Schluter
current) adjusted to be small.

e Changes in equilibrium at finite 8 small.

g-a stellarator: comparable to tokamak, and in di-
rection which adds to external transform.

e Bootstrap current provides substantial trans-
form, reducing transform required from
colls.

e Predicted to give self-healing neoclassical
effect on magnetic islands if ¢ Increases
outward.

Improves equilibrium S limit and robust-
ness to field errors.
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Comparison with Other Stellarators
(continued)

Aspect Ratio

Stellarator aspect ratios generally >> tokamak as-
pect ratios.

Quasi-axisymmetric stellarators can have favorable
MHD stahility and confinement at tokamak-like as-
pect ratios.

Lower cost development path and reactor?

Axisymmetric component of shaping can be
used in QA stellarators to improve ballooning sta-
bility, get 2nd stable regime in core.

Strong average shaping believed to provide confine-
ment enhancement in tokamaks.

Rotation possible with quasi-symmetry. Tokamak-
like transport barriers?

QA configurations continuously deformable to
tokamaks. Provides potential evolutionary path for
tokamak to a hybrid between an advanced tokamak
and a drift-optimized stellarator.
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Quasi-Axisymmetric Stellarators

Comparison with advanced tokamaks:

¢ Externally generated rotational transform elim-
inates or reduces need for rf current drive.

e External control over transform profile: Can
produce monotonically increasing ¢ (decreasing

q).

e Can use nonaxisymmetric field to stabilize ex-
ternal kink and vertical mode, even in absence
of conducting wall.

e Disruption suppression.

— Present day stellarator experiments do not
see disruptions in normal operation. (Al-
though they can produce disruptions if
they try.)

— WT7A saw suppression of disruptions when
fraction of externally generated ¢ > 20%.
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QA Configuration Design

Start with ARIES-RS advanced tokamak equilibrium.
Morph to 3D stellarator configuration, retaining quasi-
axisymmetry. Aspect ratio constrained by PBX coils.

Retain ARIES bootstrap-like current profile and
associated pressure profile.

Aries tokamak B limit = 4.5% (with conducting wall).
Optimization study performed at = 4%.

Aries tokamak c82 stellarator
starting point configuration

FP.@2-18



OCT-14-1999 ©3:38 PPFL - THEORY DEPARTHENT BA9 243 2662 FP.E9-18

Configuration C82

3 field periods, RKa) = 3.4
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Ballooning Stability

Ballooning 3 limit an issue for many quasi-symmetric
designs, particularly as aspect ratio reduced.

Ballooning limit not yet tested experimentally in
stellarators (8 < 2% in experiments), but:

e Ballooning modes caused disruptions in TF'T'R.

Ballooning: Our Solution

e Construct quasi-axisymmetric field with large
n = 0 (axisymmetric) component of ellipticity
and triangularity.

e ARIES advanced tokamak studies provide ini-
tial guide to stabilizing shape.

o Improved vertical stability allows greater ax-
isymmetric shaping than in tokamak.

Configuration C82 ballooning stable at 8 ~ 4% with
reference profiles.

C82 core in 2nd stability regime for ballooning. Can
raise 0§ by peaking pressure.
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Kink Stability

e External kink a key issue for advanced toka-
maks, which rely on stabilization by close fit-
ting conducting wall.

o External kinks not extensively studied in stel-

larators. Can now be calculated by Terpsi-
chore and CAS3D codes.

e At low collisionality and high 3, stellarator
bootstrap currents can drive kinks.

e Kink can be driven by Phirsch-Schluter current,
even for zero net current. (see e.g. Anania and
Johnson, 1983)

Note: Net current stabilizes pressure driven

external kinks in conventional tokamaks. (Troyon
scaling: 8, o< I/aB)

e We stabilize external kink in our configuration
by a combination of externally generated shear
and corrugation of the boundary.
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Externally generated shear stabilizes external
kink mode, even in absence of conducting wall.

Fu and Cooper. Calculations with Terpsichore code.

Effect of Shear
0.1 T T T | F T T T T T T l T T T
i n =1 : Np = 4
: ! R/a=3
0.075 L _
] 1) =0.46 5 - 6.8%
005 - 1(a) =0.35 N _
e - @) 1 Conducting
wall at 2a.
0.025 | |
O i 1 I 1 1 | 1 | i ] | ] | 1

0.06 0.1 0.14 0.18 0.22 0.26

shear (1(1)-1(0.75))

¢ Comparable tokamak has Bc = 2.0%.

o Advanced tokamaks rely on close-fitting conducting
wall to stabilize external kink.
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Fu, Cooper, C. Nuehrenberg, Redi

Configuration C82 is robustly stable to
the vertical mode. (no conducting wall)

Vertical Stability for a Series of Configurations
Interpolated Between C82 and a Tokamak

0.005 T
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nonaxisymmetry measure

May be able to further improve design by
ogoing to higher elongation.
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Conclusions

MHD stabilization opens up new, previously unex-
plored regime in configuration design space.

e Quasi-axisymmetry provides good neoclassical
confinement, possibility of tokamak-like trans-
port barriers.

e Perturbed bootstrap current effects oppose mag-
netic island formation.

‘e Ballooning stabilized by axisymmetric shap-
ing. Core in 2nd stability regime.

e Kink stabilized, without conducting wall, by
combination of externally generated shear and
corrugation of boundary.

e Vertical mode is robustly stable with wall at
infinity in kink stabilized configuration.

A proposed experiment would study transport, 3D
MHD stabilization, potential advantages and disad-
vantages of bootstrap current, disruption suppres-
sion near the 3 limit.
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