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Stellarators Offer Innovative Solutions to Critical
Problems of Magnetic Fusion

¥ Challenge for MFE: Finding a high-beta plasma configuration that can be

sustained in steady-state without disrupting.

¥ Advanced tokamaks:

Bootstrap current, current profile control, MHD mode control.
Þ Elaborate controls to avoid disruptions; high recirculating power (Qeng»5)

¥ Stellarators:

Externally-generated helical fields, 3D shaping.
Þ High aspect ratio (5-12), low power density (£1ÊMW/m2 neutron wall load)

¥ Low-aspect-ratio (£4), high-b (³5%) stellarators (ÒCompact StellaratorsÓ).

Bootstrap current + helical fields & 3D shaping.
Þ Disruption-free operation at tokamak-like performance and aspect ratio.
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Outline: Developing the Physics Basis
for Compact Stellarators

¥ Toroidal physics knowledge base.

¥ Compact-stellarator concepts.

¥ Planned experiments: goals and physics design.
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Enhanced Confinement is Obtained in Stellarators

¥ Similar enhancement (x2.3) seen in low-shear W7-AS.

¥ ISS95 multi-device empirical scaling similar to tokamak ITER-89P.
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Stellarator Fields Can Suppress Disruptions

¥ Application of external transform:

Ð 3-fold increase in density limit.

Ð q<2 with no disruptions.

¥ total i(a) = 0.35

¥ Ohmic currents, low b, high aspect ratio.

WVII-A Team, Nucl. Fusion 20 (1980) 1093.

¥ Disruptions typically not observed in stellarators, if conditions for global tearing

stability are satisfied.
¥ Need experiments to extend to high b, low aspect ratio configurations.
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Stellarator Physics Basis- Status and Directions

¥ Experiments at T£5ÊkeV, n£3´1020 m-3, ábñ£2.1%, tpulse~1Êhr.

¥ Confinement scaling similar to tokamaks, enhanced-confinement regimes.

¥ Theory-based numerical design capability with computational tools.

¥ Stellarator research- current directions:

Ð New large devices focussed on steady-state, divertor issues.
Ð Plasma configurations optimized for high b, well-confined orbits, no current.

Ð Large aspect ratios (R/áañ = 5-12).

Ð Large reactors, e.g. W7-X-based HSR design at R=22Êm.

¥ New direction- broaden the base by adding tokamak-developed physics:

Ð Bootstrap current.

Ð Transport barrier control via flow shear.
Þ Basis for High Beta, Low-Aspect-Ratio configurations.
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Recent Advances in Theory and Numerical Design
Capability Þ Compact Stellarators

Apply toroidal physics and 3D shaping to create toroidal magnetic

configurations satisfying physics goals.
¥ Stabilize ballooning, kink, vertical, neo. tearing at high b, even with current.

¥ Good confinement.

¥ Steady state without current drive.

Two approaches to CS plasmas with AT-like b (5%) and aspect ratio (<4)

will be tested experimentally.

¥ Quasi-axisymmetry (QA): Hybrid of AT (bootstrap current) + stellarator:  NCSX

¥ Quasi-omnigeneity (QO): Low current, advanced-stellarator-like physics: QOS
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National Compact Stellarator Experiment (NCSX):
Develop the Physics of High-Beta QA Stellarators

DemonstrateÉ

¥ High-beta, disruption-free operation with bootstrap + external transform.

UnderstandÉ

¥ Beta limits and limiting mechanisms.

¥ Reduction of neoclassical transport by QA design.

¥ Confinement scaling; reduction of anomalous transport by flow shear control.

¥ Equilibrium islands and neoclassical tearing-mode stabilization by choice of

magnetic shear.

¥ Compatibility with power and particle exhaust methods.
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NCSX Plasma Configuration Stable at ábñ=4%

¥ Aspect ratio 3.4
¥ 3 field periods
¥ Assumed bootstrap-like current profile.

¥ Stable to ballooning, kink, vertical,
Mercier modes without nearby con-
ducting structures.
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NCSX Coils provide edge shear and ~50% of transform
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AT®QAS 3D Plasma Deformation for MHD Stability

AT reactor NCSX

¥ Ballooning stability (strong axisymmetric shaping).

¥ Kink stability (edge shear + boundary corrugation).

¥ Vertical stability (strong external rotational transform).

¥ Neoclassical tearing stability (stellarator shear everywhere).
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|B| Looks Tokamak-Like

Poloidal angle

mod-B along 
field line
at r/a»0.7

¥ Approximate quasi-symmetry (~axisymmetric |B| spectrum in magnetic

coordinates) for tokamak-like: neoclassical transport and orbit confinement,

bootstrap current, ability to flow.
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Helically Symmetric Experiment (HSX) will test transport
reduction via quasi-symmetry principles

¥ R0=1.2Êm

¥ áañ=0.15Êm

¥ Aspect ratio 8

¥ B=1ÊT

Univ. of Wisconsin
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 NCSX Coil System Using Existing PBX-M Components

¥ TF Coils

¥ PF Coils (not shown)

¥ New saddle coils (with

independent feeds) provide

3D shaping fields, flexibility.

¥ R=1.45Êm, áañ=0.42Êm

¥ Aspect ratio 3.5

¥ NBI heating (6ÊMW)
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 Saddle Coils Provide Flexibility to Test Key Physics
Z
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¥ Coils reconstruct plasma boundary (within 1.2Êcm avg.) and preserve physics

propertiesÐ QA and stability.

¥ Can test kink stabilization with ~10% current adjustment.
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NCSX Confinement Projections Using 3D Simulations

Neutral Beam Orbit Loss vs B ¾®

¥ 3D Monte Carlo orbit-following code with full

collision operator.

¥ Deposition profile from 2D TRANSP simulation.
¥ Co-injection H0®H+ favored.

Thermal Neoclassical Transport

¥ 3D gyrokinetic M-C code for electrons, ions.
¥ Assume e(FaÐF0) = Ti0 to approximate

ambipolar Er (ion root); increases confinement by ~30%.

¥ Neoclassical confinement time µB2.  Electron transport << ions.

Operating Points, assuming tE= min(2.3´tE
ISS95, tE

neo/2)

¥ Project ábñ=4%, B=1.5ÊT, Pinj=6.9ÊMW.

¥ In progress: improved confinement-optimization; RF heating scenarios.
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Low-R/a Quasi-Omnigeneous Stellarators

¥ Approximately aligns bounce-averaged drift orbits and magnetic surfaces to

reduce neoclassical transport and orbit loss.

¥ Magnetic well and stellarator shear out to edge.

¥ Low bootstrap current (~1/10 of tokamak) makes configuration insensitive to b.

Ð magnetic shift <0.1áañ as b varies 2®6%.

Ð iota reduced <8% in reference QOS configuration (b=2%)

QOS Experiment will test

¥ Reduction of orbit loss and neoclassical transport

¥ Reduction of bootstrap current

¥ Configuration invariance with beta.
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 R/a=3.6 QO Spectrum Has Unique Characteristics

Helical term

Tokamak 1/R

Bumpy field

¥ Large helical term (~3´W7X) increases vacuum iota (~0.6)

¥ 1/R term ~1/4´tokamak reduces toroidal curvature drift.

¥ Radially-varying mirror (ÒbumpyÓ) term produces poloidal grad-B drift.
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QOS Plasma Configuration and Modular Coils

R0 = 1Êm, áañ = 0.28 m

R0/áañ = 3.6

B0 = 1ÊT

i(0) = 0.56, i(a) = 0.65 (monotonic)

vacuum well

neoclassical tE»3-5´ISS95 scaling

(Monte Carlo loss rate calculation)

¥ Large helical deformation distinguishes from QA shape.
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QOS Ballooning Beta Limit Increased by 3D Reshaping
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Summary

Compact stellarators combine the best of stellarators and advanced tokamaks:

Steady-state disruption-free operation at tokamak-like performance and aspect

ratio.

Dramatic progress in physics development for compact stellarators has

strengthened the basis:

¥ Stability to ballooning modes through shaping.

¥ Stellarator shear for neoclassical tearing stability.

¥ Equilibrium reconstruction from practical coils preserving key physics

properties.

¥ NCSX: Kink and vertical stability in high-bootstrap, advanced-tokamak-like QA

configuration.

¥ QOS: Good neoclassical confinement in low-aspect-ratio, advanced-

stellarator-like QO configuration.
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Next Physics Development Steps

NCSX

¥ Magnetic surface robustness throughout plasma evolution.

¥ Optimization of coils and transport.

¥ Access for full diagnostic and heating complement.

QOS

¥ Plasma configuration and modular coils optimized for experiment.

¥ Assessment of performance and flexibility.


