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I. Introduction

PPPL

� We investigate the stability of MHD modes in com-
pact stellarators.

� This work is motivated by recent development of
compact stellarator concepts, such as

Quasi-Axisymmetric Stellarators (QAS) and

Quasi-Omnigeneous Stellarators (QOS).

� The MHD stability is a key issue in these two con-
cepts.

� The proposed National Compact Stellarator Exper-
iment (NCSX) is designed to be stable to external
kink modes, vertical modes, and ballooning modes
in absence of a conducting wall.

3



Highlights
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� External Kink Stability:

The external kink modes in QAS can be

stabilized by 3D shaping at high beta

(� � 5% at R=a = 3:4) without a con-

ducting wall.

� Vertical Stability:

The vertical mode in current-carrying

stellarators is shown to be more stable

than in tokamaks due to stabilizing ef-

fects of vacuum rotational transform.

The NCSX candidate con�guration is

found to be robustly stable to vertical

mode without a conducting wall.
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II. The 3D Stability Code Terpsichore
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� The TERPSICHORE[1] is a 3D ideal MHD linear
stability code based on the Energy Principle.

� It uses a hybrid �nite element method for radial dis-
cretization and Fourier decomposition in poloidal
and toroidal angles (in Boozer coordinates).

� The code takes as input fully 3D numerical equilib-
ria generated by the VMEC code[2].

� Equilibria are assumed to have closed ux surfaces
and stellarator symmetry:

R =
X
m;n

Rm;n(s) cos(m� � nNp�)

Z =
X
m;n

Zm;n(s) sin(m� � nNp�)

[1] D. V. Anderson, W. A. Cooper, R. Gruber, S. Merazzi, and

U. Schwenn, Scient. Comp. Supercomputer II, 159 (1990).

[2] S. P. Hirshman and J. C. Whitson, Phys. Fluids 26 3553

(1983).
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The Energy Principle
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Benchmark of the Terpsichore Code
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� The Terpsichore results agree with PEST[3] and
CAS3D[4] for the beta limit of an n = 1 external
kink in an optimized ARIES-RS tokamak.

� The Terpsichore results agree with an analytic sta-
bility criterion for the vertical mode.
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[3] R. C. Grimm, J. M. Greene, J. L. Johnson, Methods Com-

put. Phys. 16, 273 (1975)

[4] C. Nuehrenberg, Phys. Plas. 3, 2401 (1996).
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A Few Subtleties in 3D Calculations
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� Mode representation and phase depen-

dence;

� Vacuum grid generation;

� Singularity in parallel current;

� Convergence study.
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Mode Family and Phase Dependence
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� Mode representation

�s(s; �; �) =
X
l

�l(s) sin(ml� � nl�+�)

�(s; �; �) =
X
l

�l(s) cos(ml� � nl�+�)

where �s = � � rs and � = � �B�rs=jrsj2.

� Mode families

The mode number n is coupled to n+ kNp. There
are Np=2+1 families for even Np and (Np�1)=2+1
families for odd Np. For example, there are n = 0
and n = 1 families for Np = 3.

� Phase dependence

The stability of n 6= 0 families does not depend on
the phase � except for the n = Np=2 family with
even Np.
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Resonant Detuning of Singularity in

Parallel Current
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� We �nd that parallel current is usually singular at
the rational surfaces;

(
jk
B
)m;n =

p0p
gB2

Im� Jn

m�� n
(
p
g)m;n

� The singular parallel current drives unphysical Mercier
modes and kink modes which make it impossible to
determine real unstable modes;

� A resonant detuning is used to smooth the singu-
lar parallel current. One of possible mechanism for
detuning is magnetic island.

1

m�� n
! m�� n

(m�� n)2 + (m�Æ)2
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Quadratic Convergence in Radial Mesh and

Exponential Convergence in Number of

Equilibrium and Stability Harmonics

PPPL
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III. Stability of External Kink Modes
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� Bootstrap current in QAS is comparable to toka-
mak's and can drive external kinks.

� Advanced tokamaks with high bootstrap fraction
rely on wall stabilization for kink stability at high
beta.

� In QAS, 3D non-axisymmetric shaping can be used
as an extra knob to control the kink stability.

� In QAS, the external kinks can be stabilized at high
beta by edge magnetic shear and 3D shaping.
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Stabilization of Kinks by Edge Shear
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However, a complete stabilization by shear alone tends to

reduce the rotation transform to a low value.
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Stabilization of Kinks by 3D shaping
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Cross-sections of a QAS before and after 3D shaping.
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The Mode Structure of External Kinks Exhibit

Strong Ballooning Feature

PPPL

Figure 1: contour of perturbed pressure at the two

symmetric cross-sections
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ÆW Analysis of 3D Shaping E�ects
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ÆWp =
1

2

Z
p
d3x[ÆB?

2 + (ÆBk �B
� � rp
B2

)2

+jk � � � ÆB� 2� � rp � � �]

vacuum bending kink ballooning

c3m 1:00 4:05 �3:98 �1:72

c82 1:00 4:51 �3:87 �1:64

� The ballooning term contributes signi�cantly to the
kink drive.

� The e�ects of the 3D shaping mainly enhance the
�eld line bending energy. Our results show that
the local magnetic shear on the outboard side of
the plasma is enhanced by the 3D shaping. This
suggests that the enhanced local magnetic shear is
the main mechanism for stabilization via 3D shap-
ing.
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External Kink Stability in QOS
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� The bootstrap current in QOS is typically smaller
than in tokamaks and can be either sign.

� The bootstrap current may be used to control the
kink stability.

� Initial results for a R=a = 3:6, � = 3:7% QOS with
self-consistent bootstrap current:

The external kink modes are stable. This is con-
sistent with the fact that the bootstrap current is
small and negative.

When beta is increased to 5%, the plasma is unsta-
ble to an interchange-like mode with weak balloon-
ing feature. The e�ects of bootstrap current and
free boundary are small.
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IV. Stability of Vertical Modes
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� It is known that tokamaks with high elongation suf-
fer from vertical instability which results in disrup-
tions.

� We show analytically that the vertical modes are
much more stable in QAS than in tokamaks due to
stabilizing e�ects of vacuum rotational transform.

� The con�guration c82 is found to be robustly stable
to vertical mode. The stability has been con�rmed
by CAS3D calculations with wall at in�nite.
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The vertical mode is stabilized by

nonaxisymmetric shape

PPPL
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Figure 2: The eigenvalue of the vertical mode versus frac-

tion of c82's nonaxisymmetric shape
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Analytic Stability Criterion for Vertical Mode
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� We have derived an analytic stability criterion for
vertical mode in a large aspect ratio QAS with uni-
form current density and vacuum rotational trans-
form pro�les.

� The vacuum rotational transform needed for stabil-
ity is given by:

f =
�2 � �

�2 + 1
(1)

where f = �vac=�total is the fraction of vacuum ro-
tational transform and � is the axisymmetric elon-
gation. This criterion has been con�rmed by the
Terpsichore code.
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The Terpsichore calculations con�rm the analytic

stability criterion of the vertical mode in a

stellarator

PPPL
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form as function of axisymmetric elongation
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V. Stability of High-n Ballooning

Modes
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� QAS c82:

The ballooning mode is stabilized by strong
axisymmetric shaping.

The beta limit is similar to the AT tokamak's at
�crit � 4%.

� QOS:

The ballooning mode is stabilized by 3D shaping.

The 3D shaping increases the beta limit from 2%
to 4%.
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The ballooning modes are stable for the

optimized QAS con�guration c82.

PPPL
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VI. Conclusions
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� The MHD stability of quasi-axisymmetric stellara-
tors are investigated using fully 3D calculations.

� The vertical mode in quasi-axisymmetric stellara-
tors is more stable than in tokamaks due to stabi-
lizing e�ects of vacuum rotational transform.

� The external kink modes in QAS can be stabilized
at high beta without conducting wall by 3D shap-
ing via global and local magnetic shear.

� The results found here demonstrate that there ex-
ists a new class of stellarators with quasi-axisymmetry,
large bootstrap current, high MHD beta limit with-
out conducting wall, and compact size.
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Contours of Displacement � � rS for

n = 0 Vertical Mode
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QOS with Negative Current Is More

Stable

PPPL

Interchange
like mode
λ = 4.9e-4
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external mode
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negative current

positive current
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Highlights
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QAS C82 Reference Pro�les
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