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NCSX is a medium-scale quasi-axisymmetric stellarator, designed to
achieve β ~ 4% at aspect ratio A ~ 3.4 with passive stability to the
ballooning, external kink, vertical, and  neoclassical-tearing instabilities
via 3D shaping without a  conducting wall.  The proposed experiment
will test these theortical predictions of stability and whether  plasmas can
be obtained near the beta-limit without disruptions.  The quasi-
axisymmetric optimization of the magnetic field gives orbit-confinement
and neoclassical transport similar to tokamaks.  This should allow
tokamak-like manipulation of E×B flow-shear for controlling turbulent
transport.  Target plasma parameters have been projected using empirical
scaling and numerical calculations of fast ion and thermal-plasma
neoclassical losses.  They indicate that the β ~ 4% goal can be attained
using 6MW of NBI assuming a confinement enhancement 2.3 times ISS-
95 scaling or 1.6 times ITER-89P scaling.  Projections for several
configurations and confinement levels will be presented.

This work was supported by United States Department of Energy Contract No. DE-
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NCSX Research Goals
• High-beta disruption-free operation, compatible with bootstrap & external

transform, at low aspect ratio (A < 4)

• Determine beta limits and limiting mechanisms

• Reduction of neoclassical transport by quasi-axisymmetric (QA) design

• Reduction of anomalous transport by flow-shear control, using reduced flow
damping by QA design

• Equilibrium island and neoclassical tearing-mode stabilization by design of
magnetic shear

• Test compatibility with power and particle exhaust methods

NCSX:  Proof-of-Principle facility for integrated testing
of compact stellarator plasmas



NCSX Configuration Stable at  〈β〉 = 4%

• 3 periods, 〈A〉=3.4, Quasi-axisymmetric

• Stable to ballooning, kink,vertical, mercier modes
at 〈β〉=4% without nearby conducting wall

• Bootstrap-like current profile, increases iota.
IP ~ 200 kA at B=1 T.

• Stellarator shear  (dq/dr < 0), for neoclassical island
stabilization

• Configuration c10 is predecessor with lower kink beta
limit, but better confinement.

C82





 The NCSX Construction Cost Will Be Reduced By
Re-Using PBX-M Magnets and Neutral Beams

Machine Parameters
• R=1.45 m, 〈a〉=0.42 m

• B≥1.2 T / tp≥0.5 s

Plasma Heating:
• NBI: 6 MW

• ICRF: 6 MW available

• Also re-use existing diagnostics, power supplies, C-site infrastructure at PPPL.



NCSX Beam-Ion Confinement

• Simulated using Monte-Carlo codes in full 3-D
geometry, using model plasma parameters and profiles

• Two codes
- Spong’s:  full collision operator
- Orbitmn:  pitch-angle scattering and slowing down

rate (taken as independent of
  energy)

• Deposition profile is from simulation by Transp, using
the oblate poloidal cross-section geometry (as a 2-D
calculation)

• Losses are accumulated until particles slow-down to  3/2
TI

or for a fixed number of slowing-down times (Orbitmn)

• Emphasis on H0 injection into H+ plasma
D0 losses are  ~ 2  higher



Similar NB Losses Calculated for all NCSX
Configurations

• Full 3D orbit following calculation,
with full collision operator

• H0 → H,  co-only NBI

NBI Energy Losses in QA Devices
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Thermal Neoclassical Transport Calculated
by 3D Monte-Carlo Code

Use GTC (gyrokinetic) Monte-Carlo code to
simulate neoclassical losses for each species.

- δf  simulation for electrons
-  f   simulation for ions

• Use eΦ= - Ti (r/a)2  to approximate ion-root Er

solution
increases confinement by ~30%

• Electron neoclassical transport negligible
compared to ion transport

• Scales as ~ B2    (c10)
− Use in 0D spreadsheet model to identify

operating points, or

− Iterate profiles → τEi
neo in 1D transport

solution, using empirical Te or anomalous
transport simulation

H. Mynick, Z. Lin, I. Zatz



NBI Operating Points in NCSX  (c10)
R=1.45 m, 〈a〉=0.42 m, Zeff=2

Scenario 4%      4%     
Reactor

collisionality

Magnetic field, B (T) 1.2 1.2

Injected power, P (MW) 5.3 5.5

Volume-avg. beta 〈β〉 (%) 4.0 3.0

Volume-avg. density, n (1019 m-3) 10.1 5.4

Central temperature, T0 (keV) 1.4 2.0

Collisionality parameter (nR/T2) 7.3 2.0

E   (ms) 45 33

• τE
assumed = min(2.3×τE

ISS95, τE
neo/2)

• NBI orbit losses per Monte Carlo calculations

• Neoclassical confinement times per gyrokinetic simulations.

• Density less than Sudo limit, by constraint.

• Includes 10% beam beta.



NBI Operating Points in NCSX  (c82)
R=1.45 m, 〈a〉=0.42 m, Zeff=2

Scenario max      4%     
Reactor

collisionality

Magnetic field, B (T) 1.5 1.5

Injected power, P (MW) 5.5 5.5

Volume-avg. beta 〈β〉 (%) 3.2 2.6

Volume-avg. density, n (1019 m-3) 11.3 6.6

Central temperature, T0 (keV) 1.6 2.2

Collisionality parameter (nR/T2) 6.4 2.0

E   (ms) 53 43

• τE
assumed = min(2.3×τE

ISS95, τE
neo/2)

• NBI orbit losses per Monte Carlo calculations.  Includes 10% beam beta.

• Neoclassical confinement times per gyrokinetic simulations.

• Density less than Sudo limit, by constraint.

• Need 6.9 MW to get to 4% beta.



NB Power Required for 4% Beta  (c10)
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NBI Power Required for 4% Beta  (c82)
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Transport Simulation for 1D Profiles

   C82

• Example with ne(0) = 6.7 x 1013

• χe from Lackner-Gotardi, with H=2.3
• χi  matching τEi

neo from GTC gyrokinetic simulation

− Profiles not fully converged between GTC and
    transport-solver

    Exploring range of densities and profiles

    May add ITER transport models   



Beam-Driven Currents

     ne(0)=6.7x1019

      Te(0)=1.3 keV

       Iboot = 125 kA
       Ibeam = 80 kA

       c82
   (axisymmetrized)

• Concern:  Co-NBI produces large, peaked driven
current.  May impede ability to make reactor-like broad
current profiles and thus high β

• Will give shear control via core current-drive

⇒ Examine RF heating options, to give separate
control of heating, CD, and rotation.
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ICRF Scenarios for NCSX

Possibilities examined:

✟ 30MHz

– existing NSTX HHFW heating system

– 6 transmitters: 6 MW for 5 sec, 12 MW for 2 sec

– But: frequency is fixed

» Major mechanical modifications necessary to retune.

✟ Lower frequencies

– requires new RF sources

– large antennas

– poor absorption

✟ High harmonic fast wave, 350MHz:

– requires new RF sources

– compact antennas,  increased plasma-launcher separation
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Direct electron absorption at 30 MHz in NCSX is marginal
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High harmonic fast wave (HHFW) heating for NCSX

✟ HHFW heating and current drive is being implemented on NSTX

✟ NCSX will typically operate at moderately susceptibility (ωpe
2/Ωce

2~ 5)
✟ Very high frequency fast waves can be strongly damped

✟ High power, CW sources are available for frequencies > 300 MHz

✟ Here we look at 350 MHz HHFW heating for NCSX

– Compact launchers, probably folded waveguide

– Isolators can be implemented at this frequency

» Reduces sensitivity of the system to changes in the plasma edge

– Current drive capability is significant

– Sources are typically CW, > 1 MW per tube



350 MHz HHFW strongly absorbed in NCSX

✟ High N|| not required for strong
absorption

✟ Significant noninductive
current drive capability

– ~0.03 - 0.05 A/W (TORIC)

– Accurate estimate requires
detailed geometry
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HHFW absorption is strong over a wide range in Te, B0
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Summary

• NCSX will test whether a compact QA stellarator can
operate disruption free at 〈β〉 ~ 4%

• NCSX has been designed to be passively stable to
ballooning, kink, vertical, and neo-tearing instabilities.

• Initial transport assessments indicate that 〈β〉 = 4%
should be accessible (in c10) using the PBX-M beam-
set assuming that a confinement enhancement of 2.3 x
ISS95  (or ~1.6 x ITER-89P) is accessible.

For c82, only 〈β〉 = 3.2% may be accessible with NBI.
Would need additional ~ 1.4MW of RF to access 4%.

• Initial calculations indicate that high-harmonic fast-
wave heating is the most attractive ICRF heating
scenario, offering good absorption and central
deposition.


