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U.S. Fusion Researchers Have a

Renewed Interest in Stellarators

• Why?

– Fusion Energy

– Science

• Design of Planned Experiments

– Physics

– Coils

– Machine Concepts

• Plans and Schedule



GHN – 20000121 - 3

Stellarators Offer Innovative Solutions to Critical

Problems of Magnetic Fusion

• Challenge for MFE: Finding a high-beta plasma configuration that can be

sustained in steady-state without disrupting.

⇒ Difficult task. Must pursue multiple solutions.

• Advanced tokamaks:

Bootstrap current, current profile control, MHD mode control.

⇒ Elaborate controls to avoid disruptions; high recirculating power (Qeng≈5)

• Stellarators:

Externally-generated helical fields, 3D shaping.

⇒ High aspect ratio (5-12), low power density (≤1 MW/m2 neutron wall load)

• Low-aspect-ratio (≤4), high-β (≥5%) stellarators (“Compact Stellarators”).

Bootstrap current + helical fields & 3D shaping.

⇒ Disruption-free operation at tokamak-like performance and aspect ratio.
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 Enhanced Confinement is Obtained in Stellarators

• Similar enhancement (x2.3) seen in low-shear W7-AS.

• ISS95 multi-device empirical scaling similar to tokamak ITER-89P.
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Stellarator Fields Can Suppress Disruptions

• Application of external transform:

– 3-fold increase in density limit.

– q<2 with no disruptions.

• total ι(a) = 0.35

• Ohmic currents, low β, high aspect ratio.

WVII-A Team, Nucl. Fusion 20 (1980) 1093.

• Disruptions typically not observed in stellarators, if conditions for global tearing

stability are satisfied.

• Need experiments to extend to high β, low aspect ratio configurations.
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Stellarator Research- Status and Directions

• Strong program world-wide, with $1B-class devices.

Strong knowledge base

• Experiments: confinement scaling similar to tokamaks, enhanced-confinement

regimes obtained. Good parameters achieved.

• Theory: numerical design capability with computational tools.

• Engineering: Accurate 3-D coils and structures, at a range of scales.

Current directions

• New large devices to study steady-state, divertor issues.

• Plasma configurations optimized for high β, well-confined orbits, no current.

• Large aspect ratios (R/〈a〉 = 5-12).

• Large reactors, e.g. W7-X-based HSR design at R=22 m.
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New Direction: Combine Tokamak and Stellarator
Physics  “Compact Stellarators”

Combine tokamak physics and 3D shaping to create toroidal magnetic

configurations satisfying physics goals.

• Bootstrap current.

• Stabilize ballooning, kink, vertical, neo. tearing at high β, even with current.

• Good confinement. Possibility of transport barriers via flow-shear.

• Steady state without current drive.

Two approaches to CS plasmas with AT-like  (5%) and aspect ratio (<4)

will be tested experimentally.

• Quasi-axisymmetry (QA): Hybrid of AT (bootstrap current) + stellarator:  NCSX

• Quasi-omnigeneity (QO): Low current, advanced-stellarator-like physics: QOS
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 NCSX Plasma Configuration Stable at =4%

• Aspect ratio 3.4

• 3 field periods

• Assumed bootstrap-like current profile.

• Stable to ballooning, kink, vertical,

Mercier modes without nearby con-

ducting structures.
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NCSX Coils provide edge shear and ~50% of transform

Total Transform

External Transform
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AT QAS 3D Plasma Deformation for MHD Stability

AT reactor NCSX
• Neoclassical tearing stability (stellarator shear everywhere).

• Ballooning stability (strong axisymmetric shaping).

• Kink stability (optimum combination of edge shear + boundary deformation).

• Vertical stability (strong external rotational transform).
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Stellarator Edge Shear Stabilizes External Kink Mode
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Boundary Deformation To Stabilize External Kink

Unstable Stable

Shape perturbation has little effect on shear and can be controlled with

coils.
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External Transform from Stellarator Fields

Stabilizes QA Vertical Instability

NCSX
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• Required ιext/ι increases with axisymmetric elongation.



GHN – 20000121 - 14

|B| Looks Tokamak-Like

Poloidal angle

mod-B along 
field line
at r/a≈0.7

• Approximate quasi-symmetry (~axisymmetric |B| spectrum in magnetic

coordinates) for tokamak-like: neoclassical transport and orbit confinement,

bootstrap current, ability to flow.
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Helically Symmetric Experiment (HSX) will test transport

reduction via quasi-symmetry principles

• R0=1.2 m

• 〈a〉=0.15 m

• Aspect ratio 8

• B=1 T

Univ. of Wisconsin
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 National Compact Stellarator Experiment (NCSX):

Develop the Physics of High-Beta QA Stellarators

Demonstrate…

• High-beta, disruption-free operation with bootstrap + external transform.

Understand…

• Beta limits and limiting mechanisms.

• Reduction of neoclassical transport by QA design.

• Confinement scaling; reduction of anomalous transport by flow shear control.

• Equilibrium islands and neoclassical tearing-mode stabilization by choice of

magnetic shear.

• Compatibility with power and particle exhaust methods.
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NCSX Coil Option Using Existing PBX-M Components

• TF Coils

• PF Coils

• New saddle coils (with

independent feeds) provide

3D shaping fields, flexibility.

• R=1.45 m, 〈a〉=0.42 m

• Aspect ratio 3.5

• NBI heating (6 MW)
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 Saddle Coils Provide Flexibility to Test Key Physics
Z
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• Coils reconstruct plasma boundary (within 1.2 cm avg.) and preserve physics

properties– QA and stability.

• Can test kink stabilization with ~10% current adjustment.
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NCSX Confinement Projections Using 3D Simulations

Neutral Beam Orbit Loss vs B

• 3D Monte Carlo orbit-following code with full

collision operator.

• Deposition profile from 2D TRANSP simulation.

• Co-injection H0→H+ favored.

Thermal Neoclassical Transport

• 3D gyrokinetic M-C code for electrons, ions.

• Assume e(Φa–Φ0) = Ti0 to approximate

ambipolar Er (ion root); increases confinement by ~30%.

• Neoclassical confinement time ∝B2.  Electron transport << ions.

Operating Points, assuming τE= min(2.3×τE
ISS95, τE

neo/2)

• Project 〈β〉=4%, B=1.5 T, Pinj=6.9 MW.

• In progress: improved confinement-optimization; RF heating scenarios.
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=4% Operating Point in NCSX
R=1.45 m, 〈a〉=0.42 m, Zeff=2

Magnetic field, B (T) 1.5

Injected power, P (MW) 6.9

Volume-avg. beta 〈β〉 (%) 4.0

Volume-avg. density, n (1019 m-3) 11.3

Central temperature, T0 (keV) 2.0

Collisionality parameter (nR/T2) 4.2

Ei  (ms) 53

• τE
assumed = min(2.3×τE

ISS95, τE
neo/2)

• NBI orbit losses per Monte Carlo calculations

• Neoclassical confinement times per gyrokinetic simulations.

• Density less than Sudo limit, by constraint.

• Includes 10% beam beta.
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Optimized Coil Options Are Being Studied for NCSX

Planar circular coils

Conformal saddles

Optimally-shaped coils

No saddles

Benefits

• Heating and diagnostic access.

• Reduce or eliminate saddle coil requirements.
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Low-R/a Quasi-Omnigeneous Stellarators

• Approximately aligns bounce-averaged drift orbits and magnetic surfaces to

reduce neoclassical transport and orbit loss.

• Magnetic well and stellarator shear out to edge.

• Low bootstrap current (~1/10 of tokamak) makes configuration insensitive to β.

– magnetic shift <0.1〈a〉 as β varies 2→6%.

– iota reduced <8% in reference QOS configuration (β=2%)

QOS Experiment will test selected physics properties

• Reduction of orbit loss and neoclassical transport

• Reduction of bootstrap current

• Configuration invariance with beta.
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 R/a=3.6 QO Spectrum Has Unique Characteristics

• Large helical term (~3×W7X) increases vacuum iota (~0.6)

• 1/R term ~1/4×tokamak reduces toroidal curvature drift.

• Radially-varying mirror (“bumpy”) term produces poloidal grad-B drift.
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QOS Plasma Configuration and Modular Coils

R0 = 1 m, 〈a〉 = 0.28 m

R0/〈a〉 = 3.6

B0 = 1 T

ι(0) = 0.56, ι(a) = 0.65 (monotonic)

vacuum well

neoclassical τE≈3-5×ISS95 scaling

(Monte Carlo loss rate calculation)

• Large helical deformation distinguishes from QA shape.
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QOS Ballooning Beta Limit Increased by 3D Reshaping
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Plans

NCSX: Develop design to fully satisfy physics requirements

• Magnetic surface robustness and flexibility.

• Optimization of coils and transport.

• Access for full diagnostic and heating complement.

Submit proposal in 2001

QOS: Physics development

• Plasma configuration and modular coils optimized for experiment.

• Assessment of performance and flexibility.

Timing similar to NCSX
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Summary

Compact stellarators combine the best of stellarators and advanced tokamaks:

Steady-state disruption-free operation at tokamak-like performance and aspect

ratio.

Physics development has made dramatic progress:

• Stability to ballooning modes through shaping.

• Stellarator shear for neoclassical tearing stability.

• Equilibrium reconstruction from practical coils preserving key physics

properties.

• NCSX: Kink and vertical stability in high-bootstrap, advanced-tokamak-like QA

configuration.

• QOS: Good neoclassical confinement in low-aspect-ratio, advanced-

stellarator-like QO configuration.

A range of interesting coil and machine options exists. Physics benefits are being

evaluated.


