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Outline

• Motivation

• Configuration Design

• Configuration Characteristics
− Stability, Transport, Flux surface quality

• Coil Design & Flexibility
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Compact Stellarators Offer Innovative Solutions
 Can combine the best features of Stellarators and Advanced Tokamaks

• Stellarators:  Externally-generated helical fields, low recirculating power,

typically disruption free.

• Advanced tokamaks:  Excellent confinement, low A – high power density,

bootstrap current

• Compact Stellarators:  Use 3D shaping flexibility to combine best features

Advances in Theory and Numerical Design Capability ⇒ Compact Stellarators

• 3D shaping to passively stabilize external kink, vertical, neo-tearing, ballooning

− expand safe operating area to β ≥ 4%,

          without need for conducting walls or feedback systems

− prevent disruptions?

• Good confinement. Quasi-axisymmetry to close drift-orbits, allow plasma flow

• Aspect ratio:  ~ 4

• Steady state without current drive.
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NCSX Physics Opportunities & Goals
• Understand role of external transform & 3D shaping in disruptions

• Understand role of kink- and ballooning modes in beta-limit
   - tokamak-like vs. toroidally localized ballooning

• Test quasi-axisymmetric reduction of neoclassical transport.
Understand induced flow-damping.

• Understand turbulence in quasi-symmetric configuration.
   Effect of quasi-symmetry and Er on confinement, ability to induce
   enhanced confinement

• Understand neoclassical-island stabilization using externally imposed
islands

• Understand Alfvenic-modes in 3D geometry

• Understand effect of 3D shaping and flux-surface topology on edge
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 Method:  Design for  High β
• Plasma shape and coils are designed for desired properties at
   〈β〉 ~ 4%, including effect of bootstrap current

• Most stellarator designs have been optimized without net plasma
current, coils designed for vacuum configuration

• Required substantial tool development
− Coil optimization including plasma currents
− Improved 3D equilibrium codes – PIES and VMEC
− Kink and ballooning stability calculations inside optimizer
− Transport and bootstrap calculations inside optimizer
− Approximate coil design inside optimize
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Wide Range of 3D Configurations
Has Been Explored

(many useful discussions with P. Garabedian & J. Nuehrenberg)

− Aspect ratio, A: 3 − 5
− Average elongation up to 3      (exploiting robust vertical stability)
− Vacuum magnetic well    
− Edge iota  ι(a):  0.47 − 0.78      ( q(a):  1.3 – 2.1 )
− External transform fractions at β-limit:  50 – 80%
− 2, 3, 4 periods

• Major distinguishing characteristics:
             flux-surface quality, coil  Jmax, fast ion confinement

• Attractive design configurations have been identified
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New Attractive Configuration
• 3 periods, 〈A〉=4.4, 〈κ〉~1.7
   〈indented〉

• Stable to ballooning, kink,
   vertical, Mercier at β=4.1%

• Limited by ballooning, thus
   should be able to optimize profiles

• Reduced coil complexity

• Iota: 0.4 → 0.65
   ~2/3 from external coils
   neoclassical-tearing stable

LI383

See G-Y Fu, et al.  for detailed     
discussion of MHD stability
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 Quasi-Axisymmetric: Low effective ripple

• εeff from NEO code by
   Nemov-Kernbichler

• In 1/ν regime,  neoclassical
   transport scales as  εeff

3/2

• Edge εeff ~ 3.4%

• Allows counter-inj.  NBI

• Iota > 0.5
   improves axisymmetric-
   neoclassical confinement
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Low εh,eff  ⇒  Low Helical transport

• Assume B=1 T, Pheat=5 MW , R=1.75m, HISS95=2.6 (HITER-89P=1.1)
    ⇒ β = 4%, ν* ~ 0.25
• Helical transport is sub-dominant with self-consistent Er

• Can access β = 4% at high density with HISS95 = 1.7
• Shaing-Houlberg for helical transport, benchmarked with Monte-Carlo.
• Can add up to 6MW of ICRF if needed to access high beta.
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B = 2T Allows Low Collisionality

• Helical transport is still sub-dominant
• Assume HISS95 = 2.6, Pheat = 5 MW  ⇒ ν* ~ 0.04, β = 1.7%
                 HITER-89P = 0.95
Allows study of plasmas with reactor-like collisionality
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Flux-surface Studies:  Startup looks Ok

Vacuum Full current, β=0 target Full current, β=4.2%
• Fixed boundary PIES equilibrium calculations.
• Large island at ι=0.6, w/a~0.13 for β =0,  w/a ~0.1 for β =4.2%
   Neoclassical effects reduce w/a to effectively < 0.03 at full β
• Time-dependent startup modeling shows kink stability maintained
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Island removal method

• Calculate coupling between plasma boundary shape and island
widths by perturbation, using PIES

• Invert coupling matrix to find shape modification to remove islands
• Modification has no effect on calculated stability or transport

Shape Perturbations

δr(n,m)
          (3,4) : 4.2 mm
          (3,5) : 1.4 mm
          (3,6) : 3.2 mm

    (3,7) : -1.1 mm
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Multiple Coil Designs Offer Opportunity

• Optimized saddle coils
   for 3D field
• + PF + TF coil sets

• Optimized modular coils
   for 3D field
• + PF + weak TF coil sets

• See N.Pomphrey, poster for coil optimization

• Which gives better flexibility?  Better flux surfaces?
   Better access?      Analysis underway
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Work in Progress

• Reconstruction of good flux surfaces from coils
• Reconstruction of original physics properties from coils

− Stability and transport

• Flexibility and Robustness of coils
− Ability to accommodate different pressure and current profiles
− Ability to vary iota profile and 3D geometry to study 3D plasma

physics

→ Free-boundary optimizer:  vary coil currents to reconstruct
      plasmas with desired physics properties

• Initial Results indicate good robustness and flexibility
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IP=150kA, β=1%

• Can avoid edge iota = ½ resonance

Wide Range of Iota Available
Vacuum

Modular Modular
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IP=150kA, β=1%
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Conclusions
• Attractive configuration has been identified

− passive stabilty to kink, ballooning, vertical, Mercier,
neoclassical tearing to β > 4%

− no need for conducting walls or feedback systems
− very good quasi-axisymmetry

• Coil designs appear flexible, can reproduce physics goals
•  Basis for exciting and flexible experiment
    Test our understanding of compact 3D confinement


