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Compact stellarators offer novel solutions for confining high-β plasmas
for magnetic confinement fusion, combining the advantages of the
advanced tokamak with the external control and disruption resilience of
the stellarator. The configurations developed for NCSX have a low
aspect ratio (3 - 4) and passive stability to the ballooning, low-n external
kink, vertical, and neoclassical tearing instabilities, without a conducting
wall or active feedback. The plasma shape has high average elongation
and triangularity. The 3D shape produces monotonically increasing
rotational transform profile and is optimized to produce a quasi-
axisymmetric magnetic field for good orbit confinement. A range of such
configurations are studied with beta limits as high a 7% and as much as
80% of the magnetic transform generated by the coils. The goal of an
experiment using these configurations would be to study the beta limit
and disruption resilience. Self-consistent transport simulations of the
accessible β range will be presented for both neutral-beam (including
fast-ion losses) and ICRF heating.
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Outline

• Motivation

• Configuration Design

• Configuration Characteristics
− Stability, Transport, Flux surface quality

• Coil Design & Flexibility
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Compact Stellarators Offer Innovative Solutions
 Can combine the best features of Stellarators and Advanced Tokamaks

• Stellarators:  Externally-generated helical fields, low recirculating power,

typically disruption free.

• Advanced tokamaks:  Excellent confinement, low A – high power density,

bootstrap current

• Compact Stellarators:  Use 3D shaping flexibility to combine best features

Advances in Theory and Numerical Design Capability ⇒ Compact Stellarators

• 3D shaping to passively stabilize external kink, vertical, neo-tearing, ballooning

− expand safe operating area to β ≥ 4%,

          without need for conducting walls or feedback systems

− prevent disruptions?

• Good confinement. Quasi-axisymmetry to close drift-orbits, allow plasma flow

• Aspect ratio:  ~ 4

• Steady state without current drive.
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NCSX Physics Opportunities & Goals
• Understand role of external transform & 3D shaping in disruptions

• Understand role of kink- and ballooning modes in beta-limit
   - tokamak-like vs. toroidally localized ballooning

• Test quasi-axisymmetric reduction of neoclassical transport.
Understand induced flow-damping.

• Understand turbulence in quasi-symmetric configuration.
   Effect of quasi-symmetry and Er on confinement, ability to induce
   enhanced confinement

• Understand neoclassical-island stabilization using externally imposed
islands

• Understand Alfvenic-modes in 3D geometry

• Understand effect of 3D shaping and flux-surface topology on edge
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 Method:  Design for  High β

• Plasma shape and coils are designed for desired properties at
   〈β〉 ~ 4%, including effect of bootstrap current

• Most stellarator designs have been optimized without net plasma
current, coils designed for vacuum configuration

• Required substantial tool development
− Coil optimization including plasma currents
− Improved 3D equilibrium codes – PIES and VMEC
− Kink and ballooning stability calculations inside optimizer
− Transport and bootstrap calculations inside optimizer
− Approximate coil design inside optimizer

See A. Reiman et al., Invited Talk Thursday, UI1.001
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Wide Range of 3D Configurations
Has Been Explored

(many useful discussions with P. Garabedian & J. Nuehrenberg)

− Aspect ratio, A: 3 − 5
− Average elongation up to 3      (exploiting robust vertical stability)
− Vacuum magnetic well    
− Edge iota  ι(a):  0.47 − 0.78      ( q(a):  1.3 – 2.1 )
− External transform fractions at β-limit:  50 – 80%
− 2, 3, 4 periods

• Major distinguishing characteristics:
             flux-surface quality, coil  Jmax, fast ion confinement

• Attractive design configurations have been identified
   → Basis for NCSX Design
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New Attractive Configuration
• 3 periods, 〈A〉=4.4, 〈κ〉~1.7
   〈indented〉

• Stable to ballooning, kink,
   vertical, Mercier at β=4.1%

• Limited by ballooning, thus
   should be able to optimize profiles

• Reduced coil complexity

• Iota: 0.4 → 0.65
   ~2/3 from external coils
   neoclassical-tearing stable
                                                     LI383
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Full β configuration: iota crosses ½

• Full-β, full current iota crosses ½
−− Can produce disruptions in W7-AS
   when crossing near edge

• ∆′ calculations (Knowlton, Fredrickson)
  (cylindrical approx.) indicate very small
  islands could form (3.5% of radius)

• Vacuum iota everywhere below ι = ½
   ⇒ edge will pass thru ½   (q=2) during
   ramp up, may be disruption prone

• Flexibility studies: can avoided this
   by starting with vacuum iota > 1/2
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 Quasi-Axisymmetric: Low effective ripple

• εeff from NEO code by
   Nemov-Kernbichler

• In 1/ν regime,  neoclassical
   transport scales as  εeff

3/2

• Edge εeff ~ 3.4%

• Allows counter-inj.  NBI

• Iota > 0.5
   improves axisymmetric-
   neoclassical confinement
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Power-Balance Solver (STP)

• Steady-state 1D Power balance solver for Te and Ti, assumes edge
boundary condition and density profile

• Transport model includes full transport matrix, combines
−− ‘Shaing-Houlberg’ helical neoclassical transport
−− Nemov-Kernbichler calculation of effective helical ripple (correct

for 1/ν regime)
−− Axisymmetric (toroidal) neoclassical transport (Chang-Hinton)
−− Anomalous transport models (Lackner-Gottardi, Mixed-shear,…)

• Self-consistent calculation of Er from helical transport
• Neutral-beam deposition in axisymmetric shape
• Can constrain confinement to global scaling law (with multiplier)
• Benchmarked with Monte-Carlo, including Er calculation
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Monte-Carlo Self-Consistent Er
                     J. Lewandowski(PPPL), A.Boozer, J. Williams (Columbia)

• toroidal component of the momentum-balance equation gives

        ( )rES
dt

dL

dt

dQ
=−ι ϕ

• where  Q is the charge within a surface, Lϕ is the canonical toroidal
momentum, and S is the toroidal viscous force.  In Boozer coordinates,

        ( )⊥ϕ +∂= ppS ||2
1

• Directly calculate S in a δf  simulation for each species as a function of
Er, solve for where charge fluxes balance.

• Avoids noisy simulated fluxes

See Lewandowski, Poster DP1.133
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 Low εh,eff  ⇒  Low Helical transport

• STP; Assume B=1 T, Pheat=5 MW , R=1.75m, HISS95=2.6 (HITER-89P=1.1)
    ⇒ β = 4%, ν* ~ 0.25
• Helical transport is sub-dominant with self-consistent Er

• Can access β = 4% at high density with HISS95 = 1.7
• Can add up to 6MW of ICRF if needed to access high beta.
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B = 2T Allows Low Collisionality

• Helical transport is still sub-dominant
• Assume HISS95 = 2.6, Pheat = 5 MW  ⇒ ν* ~ 0.04, β = 1.7%
                 HITER-89P = 0.95
Allows study of plasmas with reactor-like collisionality



MCZ 001024

0

10

20

30

40

1 1.5 2

M a g ne t ic  Fie ld  (Te sla )

N
eu

tr
al

 B
ea

m
 E

ne
rg

y 
Lo

ss
es

 (
%

)

Co-NBI

Counter-NBI

New Configurations Allows Counter-NBI

• Gives control of NBCD,
   Including ability to avoid it

• Mixed co- and counter-NBI
   would give rotation control

• Assumed tangent to mag.-axis
   at oblate cross-section



Flux-surface Quality:  Startup looks Ok

Vacuum Full current, β=0 target Full current, β=4.2%
• Fixed boundary PIES equilibria. See Monticello et al, Poster HP1.027
• Large island at ι=0.6, w/a~0.13 for β =0,  w/a ~0.1 for β =4.2%
   Neoclassical effects reduce it to effectively < 3% at full β
• Time-dependent startup modeling:  See Lazarus et al. Poster HP1.031
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Island removal method

• Calculate coupling between plasma boundary shape and island
widths by perturbation, using PIES

• Invert coupling matrix to find shape modification to remove islands
• Modification has no effect on calculated stability or transport

Shape Perturbations

δr(n,m)
          (3,4) : 4.2 mm
          (3,5) : 1.4 mm
          (3,6) : 3.2 mm

    (3,7) : -1.1 mm

     See Hudson et al.
     Poster HP1.028
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Multiple Coil Designs Offer Opportunity

• Optimized saddle coils
   for 3D field
• + PF + TF coil sets

• Optimized modular coils
   for 3D field
• + PF + weak TF coil sets

• Which gives better flexibility?  Better flux surfaces?
   Better access?      Analysis underway
See Valanju et al, Poster HP1.034 & Berry et al, Poster HP1.035
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Coil Flexibility Analysis

• Reconstruction of good flux surfaces from coils
• Reconstruction of original physics properties from coils

− Stability and transport

• Flexibility and Robustness of coils
− Ability to accommodate different pressure and current profiles
− Ability to vary iota profile and 3D geometry to study 3D plasma

physics

→ Free-boundary optimizer:  vary coil currents to reconstruct
      plasmas with desired physics properties

See Hatcher et al, Poster HP1.031

• Initial Results indicate good robustness and flexibility
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Modular Coils Reconstruct Target Physics

• Discrete coils cannot reproduce original shape precisely, due to engineering constraints

• Free-boundary optimization adjusts coil currents (and thus plasma shape) to recover
physics properties

−− Reconstructed plasma is kink, ballooning, vertical, neo-tearing stable.  Mercier is
marginally stable (unstable at edge, not targeted in optimization)

−− εh eff is higher than fixed-boundary by ~30%

• Stable saddle coil reconstructions have B(m,n≠0) components higher by factor  2 – 3, so
far.

Modular
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IP=150kA, β=1%
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Divertor/Limiter Investigation Begun

• Working group formed (LLNL, ORNL, PPPL, UCSD, IPP-Garching)

• Initial requirements for divertor/limiter established

• MFBE code (E. Strumberger) has been imported from Garching,
   operating at NERSC,  maps field lines outside VMEC equilibrium

• Plan:
−− Use MFBE to establish magnetic topology of edge region
−− Develop range of limiter/divertor options
−− Integrate a range of options into configuration

See A. Grossman et al, Poster HP1.033
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Conclusions
• Attractive configuration has been identified

−− passive stabilty to kink, ballooning, vertical, Mercier,
neoclassical tearing to β > 4%

−− no need for conducting walls or feedback systems
−− very good quasi-axisymmetry

• Coil designs appear flexible, can reproduce physics goals
• Basis for exciting and flexible experiment
   Test our understanding of compact 3D confinement


