
Recent Advances in the Design of
Quasi-Axisymmetric Stellarator Plasma

Configurations

NCSX: Quasi-axisymmetric stellarator designs combine
attractive features of advanced tokamaks and drift-optimized
stellarators.

Recent Progress

• Two new approaches to configuration improvement
explored.
Physics properties improved.

• Good equilibrium flux surfaces incorporated as de-
sign constraint.
Configurations with good flux surfaces identified.
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An Earlier Reference Configuration: C82
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• Good drift trajectories via quasi-axisymmetry.

• Neoclassical island suppression viaι′ > 0.

• MHD stable with bootstrap-likej profile atβ = 4%.

– Ballooning stability vian = 0 shaping.

– External kink stabilized without need for con-
ducting wall or feedback. (Externally gener-
atedι′ and 3D shaping.)

– Vertical mode robustly stable without need for
wall.



Approaches to Further Configuration
Improvement

• Two strategies pursued:

– Increaseι (poloidal flux) for improved neoclas-
sical confinement, and improve magnetic well
properties.

– Increase axisymmetric elongation to further im-
prove MHD stability.

• Previously precluded by constraint that configura-
tion fit in PBX coils.

• Fueled by code development.

– VMEC modifications (S. Hirshman) provide:

∗ robust convergence over broader range of
configurations;

∗ improved handling of large numbers of Fourier
modes;

∗ improved speed.

– New fast ballooning code (Sanchez and Hirsh-
man) incorporated in automated optimizer.



Increasedι and Improved Magnetic Well

• Increased externally generatedι desired to improve
flexibility of experiment.

• Increasedι(0) and improved vacuum well synergis-
tically lead to a different class of quasi-axisymmetric
configurations (Ku):

– Increasingι(0) aids in improving vacuum mag-
netic well properties.

– Associated changes in local shear improve sta-
bility of external kink (Fu, IAEA).

– Less shear required for kink stabilization, al-
lows higherι(0).

Configuration 383
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Increasing ι(0) eliminates need for seed current on axis.

Pressure also broadened somewhat from Aries profile.

new profile:
entirely
bootstrap-driven



Configuration 383 Has Improved Properties
Relative to C82

C82 383
No. Periods 3 3
R/〈a〉 3.4 4.4
R (meters) 1.46 1.73
Ip (kA) at B = 1 T 200 150
β 4.0% 4.1%
limiting instability kink ballooning

ι(0) .26 .4
ι(a) .47 .66
ι(0) vacuum .05 .45
ι(a) vacuum .29 .49

ion confinement (ms) 18 28
NBI loss 23% 19%

coil complexity 3.11 2.05
max coil current

density (kA/cm2) 35.8 17.8

• Ion confinement calculated by GTC code with model
potentialeΦ/Ti0 = s.

• 383 also has improved flux surfaces (PIES).



Have studied a range of configurations of this type, with
R/〈a〉 ≈ 3 – 5, 2 – 4 periods,ι(a) < .75.

Configuration 2121, A 2-Period Configuration

Has good physics properties but some difficulties in re-
covering physics properties from coils.
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C82 383 2121
No. Periods 3 3 2
R/〈a〉 3.4 4.4 3.16
ion confinement (ms) 18 28 25
NBI loss 23% 19% 18%
coil complexity 3.11 2.05 1.71
max coil current

density (kA/cm2) 35.8 17.8 16.5



An Alternative Strategy:Take advantage of robust
vertical stability to increasen = 0 elongation.

• Increasing elongation improves stability to balloon-
ing and kink.

A Configuration withκ = 2.45 (vs 1.9 for c82)

(Kessel)
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Equilibrium Flux Surfaces are an Issue for
Stellarators(Monticello et al, HP1.027)

• 3D equilibrium fields in general have magnetic is-
lands and regions of chaotic field line trajectories.

• Stellarators generally designed to have good vacuum
flux surfaces.

– Not adequate when current produces substan-
tial ι.

– Pressure-driven currents can break surfaces.

• VMEC equilibrium code: Magnetic field representa-
tion assumes good surfaces.

• PIES code: Solves 3D equilibrium equation using
general representation of magnetic field.



3k245 Has Good MHD Stability but Poor Flux
Surfaces

C82 383 3k245
No. Periods 3 3 3
R/〈a〉 3.4 4.4 3.0
β 4.0% 4.1% 5.5%*

ion confinement (ms) 18 28 18
NBI loss 23% 19% 27%

coil complexity 3.11 2.05 2.79
max coil current

density (kA/cm2) 35.8 17.8 21.

*Stable atβ = 7% after reoptimization.



The PIES Code

• General representation of field greatly slows algo-
rithm relative to VMEC.
Use VMEC solution to initialize PIES.

• Initial step:

j⊥ = Bvmec×∇p/B2
vmec,

∇ · j‖ = −∇ · j⊥,

∇×B = j.

UpdatedB has islands.
Iterate to convergence with underrelaxation scheme.

• PIES modifications in past year have speeded up code
over order of magnitudefor typical numbers of Fourier
modes, more for larger numbers of modes. (Monti-
cello, Reiman, Jun, Pletzer)

– Stored matrix inverses for Ampere solve.

– Conversion to spline representation for field line
following.

– Modification of underrelaxation scheme to im-
prove coupling to VMEC.

Has allowed routine evaluation of candidate config-
urations and higher resolution studies.



Flux Surfaces are ok for
Configuration C82 at β = 0.

PIES fixed boundary
calculation
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We find it helpful to look at Poincare plots in polar (ρ,θ)
coordinates.
    • ρ constant on VMEC flux surfaces.  Measures
       distance from magnetic axis along θ = 0, φ = 0 line.
    • θ is VMEC angular coordinate.
    • Poincare plot gives straight lines when PIES and
       VMEC coincide.

C82, β = 0, full current, replotted
fixed boundary calculation
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C82 (Previous Configuration), β = 3%

Substantial fraction of flux surfaces lost.

Calculation does not include neoclassical effects,
predicted to suppress islands.

fixed boundary calculation.

stochastic
region
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Configuration 383 has greatly improved surfaces.

β = 4.2%, full current.  fixed boundary calculation.

• total island width ≈ 15%  (10% regarded as acceptable.)

• Calculation does not include stabilizing neoclassical effect.

•  No broad stochastic region.
    Dominated by single island chain.  Can improve by 
    modifying resonant Fourier component of boundary.

ι = .



Improvement of Equilibrium Flux Surfaces
(Hudson et al, HP1.028)

• Series of PIES runs measure effect of a set of bound-
ary perturbations. (New diagnostic in code accu-
rately measures small changes in island width.)

• Response matrix determines desirable boundary shape
to minimize island widths.

• Configuration 383: 5 boundary harmonics modified
to target 9 interior resonances. Largest adjustment
≈ 4 mm.
Quasi-axisymmetry and MHD stability preserved.
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Further Assessments of Configuration 383 are
Promising

• Transport assessments with self-consistent ambipo-
lar potential indicate available power adequate to reach
4%β.

– Assessments done with new 1D transport solver
(Mikkelsen, Zarnstorff).
Solver benchmarked against GTC Monte Carlo
code in which ambipolar electric field recently
incorporated (Lewandowski, Lin, Boozer).

– Require 1.7 ISS95 to getβ = 4% for R = 1.75
m, B = 1 T, P = 5 MW (high collisionality).

– ITER-89P more optimistic than ISS95 in this
regime. (dependence on elongation, etc.)
HITER−89P = 1.1 givesβ = 4% at ν∗ ≈ .25.
(vs 2.6 ISS95).

– Predict reactor-like collisionality atB = 2 T.

• Higher externally generated transform in configura-
tion 383 provides increased flexibility.(Hatcher et
al, HP1.030)

– Externally generatedι varied from .2 to .6 with
ripple< 2.3 × original.



– Magnetic shear varied to approximately shear-
less at full plasma current. (ripple6.5 × origi-
nal)

• Initial startup simulations indicate reasonable coil cur-
rent requirements, kink stability throughout evolu-
tion. (Lazarus et al, HP1.031)



Summary

• Two new approaches to configuration improvement
explored.

• Good equilibrium flux surfaces incorporated as de-
sign objective.

• New NCSX reference configuration: 383.

– Neoclassical confinement time≈ 50% longer.

– Coils are simpler and have lower current den-
sity.

– Improved flux surface quality.

• Small adjustment of boundary shape suppresses resid-
ual island chain.

• Initial studies indicate flexibility to study range of
configurations.

• Preliminary studies of startup promising.


