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Motivation:  Build Upon Recent
Advances in Understanding

Stellarators:
• Design for orbit confinement, good flux surfaces
• Numerical design to obtain desired physics properties
• Accurate construction of experiments with good properties 

(e.g. W7AS, HSX, and superconducting LHD)
Tokamaks:
• Confirmation of ideal MHD equilibrium & stability theory; neoclassical 

theory; neoclassical tearing theory
• Importance of shear-flow & zonal (self-generated) flows for turbulence 

stabilization

Challenges:
− βT ~ 5% steady state, good confinement without disruptions (~ARIES-RS) 
− sustainment of current with minimum recirculating power 

(⇒ ~80% self-generated current boostrap)
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Combine Best Features of Both

• Use flexibility of 3D shaping to combine best features of 
stellarators and tokamaks, synergistically, to advance both

 Stellarators: Externally-generated helical fields;  no need for 
external current drive;  generally disruption free.

 Advanced tokamaks:  Excellent confinement; low aspect 
ratio – affordable, high power density; self-generated 
bootstrap current

The compact stellarator opportunity
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NCSX Mission
Understand…
• Beta limits and limiting mechanisms in a low-A current carrying stellarator
• Effect of 3D fields on disruptions
• Reduction of neoclassical transport by QA design.
• Confinement scaling; reduction of anomalous transport by flow shear control.
• Equilibrium islands and neoclassical tearing-mode stabilization by choice of 

magnetic shear.
• Compatibility between power and particle exhaust methods and good core 

performance in a compact stellarator.
• Explore Alfvenic-mode stability in reversed shear compact stellarator

Demonstrate…
• Conditions for high-beta, disruption-free operation

Acquire the physics data needed to assess the attractiveness of
compact stellarators. (adopted as 10-year goal by FESAC-1999)
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Energy Vision: a More Attractive Reactor
Vision: A steady-state toroidal reactor with

– No disruptions
– No near-plasma conducting structures or active feedback control of 

instabilities
– No current drive (⇒ minimal recirculating power)
– High power density (~3 MW/m2)

Likely configuration features (based on present knowledge)
• Rotational transform from a combination of bootstrap and externally-

generated  (how much of each?)
• 3D plasma shaping to stabilize limiting instabilities  (how strong?)
• Quasi-axisymmetric to reduce helical ripple transport, alpha losses, flow 

damping  (how low must ripple be?)
• Power and particle exhaust via a divertor  (what topology?)
• R/〈a〉 ~ 4 (how low?) and β ~ 4% (how high?)

Design involves tradeoffs. 
Need experimental data to quantify mix, assess attractiveness.
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Two strategies for Orbit Confinement in 3D
3D shape of standard stellarators ⇒ no conserved canonical momenta

orbits can have resonant perturbations, become stochastic ⇒ lost
B is bumpy every direction               ⇒ rotation is strongly damped

• ‘quasi-symmetry’
− Boozer (1983) Drift orbits & neoclassical transport depends on variation of  

|B| within flux surface, not the vector components of B !
− If  |B| is symmetric in “Boozer” coordinates, get confined orbits like tokamak
⇒ neoclassical transport very similar to tokamaks,  undamped rotation

• Non-symmetric drift-orbit omnigeneity; “linked mirror” configurations
− reduce: ∇ BxB drift ⇒ orbit width, Pfirsch-Schluter & bootstrap currents
− Principle of W-7X, new German superconducting experiment  (A=11)
− Being explored at low aspect ratio in the design of QPS  (ORNL)

Boozer coord: straight field-line coordinates, Jacobian ∝ 1/B2
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Quasi-Axisymmetry Offers Innovative Solutions
Use 3D shaping to: 

• Quasi-axisymmetry to close orbits, allow flow, get good confinement
Take advantage of tokamak advances on transport control
Use bootstrap to raise iota

• Aspect ratio ~ 4  ⇒ n=0 toroidal Fourier terms large 
⇒ compatible with quasi-axisymmetry 

• Passively stabilize external kink, vertical, neo-tearing, ballooning modes
− expand safe operating area to β ≥ 4%, 

without need for conducting walls or feedback systems
− prevent disruptions?

• Steady state without current drive.  Control of iota (q) and shear via coils 
→ NCSX Design Goals

Using Advances in Theory and Numerical modeling;  parallel computing 
(NERSC, ACL/LANL, Princeton/PPPL)
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NCSX Plasma Configuration Has Attractive Physics

• 3 periods, R/〈a〉=4.4, 〈κ〉~1.8  
<indented>

• Good magnetic surfaces.

• Quasi-axisymmetric: low helical 
ripple transport.

• Stable at β=4.1% to kink, 
ballooning, kink, vertical, Mercier, 
neoclassical-tearing modes

• ~75% of the magnetic transform 
(BP) is from external coils at β=4%.  
Remainder from boostrap current 

• Proposed device has R = 1.4 m,    
B ranging from 1.2 - 1.7T at full iota  
> 2 T at reduced iota
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Hybrid Configuration Combines Externally-Generated Fields 
with Bootstrap Current
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Quasi-Axisymmetric: Very Low effective ripple
• εeff from NEO code by

Nemov-Kernbichler

• In 1/ν regime,  neoclassical 
transport scales as  εeff

3/2

• Edge εeff ~ 1.2%,  < 0.1% in core
(bug corrected in NEO)

• Allows balanced-NBI
24% loss at 1.2T, drops as B↑

• Should give low flow-damping
- manipulation of flows for 

flow-shear stabilization
- zonal flows like tokamaks

• Linear microstability being studied
See E. Belli LP1.077
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Low εh,eff ⇒ Low Ripple Transport

• Helical transport is negligible with self-consistent Er 

• β = 4%, ν* ~ 0.25 with B=1.2 T, Pinj=6 MW,  ne = 6 x 1019 m-3 requires 
HISS95=2.9 or HITER-97P=0.9      B=1.7T gives access to ν* ~ 0.1, Ti(0)~2.3 keV

• Shaing-Houlberg for helical transport, benchmarked with Monte-Carlo.
• Uniform anomalous χ used.  Similar results obtained with Lackner-Gottardi
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Wide Range of Plasmas Accessible

B = 1.2 T
∗ β =4%, ν*I =0.25 requires 

HISS95=2.9, HITER-97P=0.9
∗ β =4% at Sudo ‘density-limit’ 

requires HISS95=1.8
∗ HISS95=1.0 gives β=2.2%

sufficient to test stability theory

• 3MW gives β=2.7%, ν*I =0.25 
with HISS95=2.9; 
β=1.4% with HISS95=1.0
sufficient to test stability theory

4 6 8 10 12 14
ne (line avg. in 1019 /m3)

1

2

3

4

<
b
>

 (
%

)

0.5

1.0

1.5

2.0
2.5

3.
03.
5

HISS-95

Pinj=6.0 MW

* *

*
0.3

0.6

0.9

HITER-97P

0.
25

0.
50

1.
00

2.50

5.00 10.00
25.00 50.00

νi*

Contours of HISS95, HITER-97P, and min ν*i

LHD and W7-AS have achieved HISS95 ~ 2.5
PBX-M obtained β = 6.8% with HITER-97P = 1.7 and HISS95 ~ 3.9



MCZ 011029D  15

Coil Design
• Coils designed to match normal B on plasma boundary 

(similar to process on W7-X and HSX)

• Many coil topologies have been explored: helical, saddle, 
modular (distorted TF)

• Modular coil sets have been designed which reproduce the 
physics properties of the fixed boundary design, with either 18 
or 21 coils.

• Still adapting the coil designs to meet engineering constraints
– See H. Neilson  CP1. 034
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NCSX Modular Coils Provide Good Physics Capability

• Modular coils best preserve physics 
properties of reference plasma:

– stable at reference β (4%).
– Good magnetic surfaces. 

• Also include Poloidal Field coils 
and weak Toroidal Field, for                          
flexibility

• Stable to β > 6.5%
with some increase in ripple

• Passive disruption stability ?

equilibrium maintained even with total loss of β or IP.

See H. Neilson, CP1.034

0918a17
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Multiple Methods used to Produce 
Good Flux Surfaces

Flux surface quality is a significant issue for 3D systems.  
NCSX design uses multiple methods to attempt to ensure good flux

surfaces:

• Explicit design to eliminate resonant fields, in both fixed 
boundary target plasma, and in coil designs

• ‘Reversed shear’ configuration ⇒ neoclassical healing of 
equilibrium islands and stabilization of tearing modes

• Trim coil arrays targetting low-order resonances
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Island Removal Method
• Calculate coupling between 

plasma boundary shape and 
island widths by perturbation, 
using PIES

• Invert coupling matrix to find 
(small) shape modification to 
remove islands 

• Modification had no effect on 
calculated stability or transport

• In experiment, neoclassical 
effects should heal islands

See S. Hudson, LP1.075
and A. Reiman, LP1.076
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Coils Produce Good Flux Surfaces

• Free-boundary equilibria (PIES)
• IP values for BT=1.2 T
• Coils designed to produce good surfaces at full current.  

Island in middle case can be eliminated with trim coils.   

Vacuum β =4.1% 
IP=125 kA

β =2% 
IP=83 kA

0907

See S. Hudson, LP1.075
and A. Reiman, LP1.076
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Trim Coil Array Controls Equilibrium Islands

• For suppression of equilibrium islands over wide range of iota and shear profiles 

• For controlled generation of islands to test neoclassical tearing theory

• Tested on vacuum and finite β configurations.
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Free-Boundary Optimizer used to 
Assess Flexibility

Free-boundary
3D Equilibrium Calc.

(VMEC)

Ballooning stability
(COBRA)

Low-n stability ; n ≤ 7
(TERPSICHORE)
Transport

(χ2
Bmn, NEO, DKES,...)

Inside Limiting 
surfaces?

Magnetic Well Depth

. . .

Optimize Coil Currents
(Levenberg-Marquardt)

• How to use coils to 
achieve physics goals?

•Very similar to how one 
operates an experiment

•General tool, useful on 
existing experiments
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Modular Coils are Flexibile
• External rotational transform 

controlled by plasma shape 
at fixed plasma current & 
profile.

• Can adjust to avoid iota=0.5, 
or hit it

• Can externally control shear 
• Can stabley accommodate 

wide range of p,j profiles
• Can use to test stability, 

island effects
• Results shown for 1017 coil 

design, similar results 
obtained for newer designs

β=0, full current

Rel. Toroidal Flux

Io
ta

PFC Boundary
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• Coil-generated rotational 
transform decouples shear 
from plasma current profile

• Can control magnetic shear 
at fixed plasma current and 
profiles

• Allows controlled study of 
shear effects , e.g., kink-
stabilization physics; 
turbulent transport.

β=0, full current
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Coil Flexibility Gives Control of Kink β-limit

• External-kink marginally stable β
changed from 3% to 1% by 
modifying plasma shape

– either at fixed shear or fixed 
edge-iota !

• Free-boundary equilibria, fixed 
pressure and current profiles

• Useful for testing understanding 
of 3D effects in theory & 
determining role of iota-profile

• Similarly,  can find stable 
equilibria with effective ripple 
varying by factor ~ 5.  For 
testing transport optimization & 
flow damping

PFC Boundary
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• Total loss of IP or β only causes a 
small shift in equilibrium (few cm), for 
fixed coil currents.

• For comparable tokamak, 
loss of β ⇒ radial shift of ~ 30cm.  
Similar shift for ~ 20% drop in IP.

• Any NCSX disruptions will not lose 
radial equilibrium, should give unique 
insight into tokamak disruption 
dynamics. 

• Possibility of passive disruption 
stability!

Equilibrium Maintained even with Loss of IP or β
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Modeling of Evolution Shows Stable Access to High-β

• Stable evolutions calculated for high 
and low temperatures (confinement)
• Stable evolution with

– iota(a) crossing 1/2 
– iota(a) always > 1/2

0907

See E. Lazarus, CP1.035
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Motivation and Goals of the Plasma Boundary Program

General Goal:

l Support the mission and objectives of NCSX and  provide the 
necessary boundary conditions for improved confinement, high  
beta, and pulse length. 

Power Handling:

l Initial PFC design for 3-6 MW and 0.5s. Vacuum vessel shaped to 
allow long connection lengths (>100m between LCMS and 
divertor plates). Design of divertor plates guided by “footprint” 
plots for a range of configurations (range in beta and iota).

Particle Control:

l Special emphasis on divertor baffle design to confine neutrals in 
the divertor area and minimize neutrals densities in the φ=0 
midplane.   
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Poincaré Plots Including Trim Coils for Island-Healing (Inside) 
Reveal More-Pronounced Island Structure Outside the LCMS 

…favorable for island divertor!

See A. Grossman CP1.036
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Phased Approach for Plasma-Facing Components:
Future Upgrades

Phase I :
• 3 divertor baffles = conformal wall armor around φ = 0o cross-section and
• 3 inboard limiters ‘centered’  around φ = 60ο

Phase II
• baffles optimized for recycling control and impurity control, based on neutrals 

and impurity transport modeling. 

Phase III
• divertor upgrades include optimized divertor baffling and divertor pumping. 

Neutrals control via 
optimized baffles and 
divertor pumping
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Modelling Efforts Make Use of International and 
Domestic Developments in the Stellarator Program

l Magnetic Boundary Topology
VEMEC: equilibrium with nested surfaces inside LCMS
MFBE: finite-beta, free-boundary, with toroidal currents
Gourdon: field-line tracing code for Poincaré plots

l Neutrals modeling
l start with 2-D and DEGAS 2 with given plasma background;

this provides first estimates of neutrals; later full 3-D

l 3-D plasma edge code development 
l collaboration with Greifswald (BoRiS-code) 
l we will adapt the BoRiS-code to the NCSX geometry and perform self-

consistent edge plasma calculations

l Turbulent transport
l 3-D turbulence code for tokamaks: BOUT-code; Greifswald group plans to 

help modify BOUT for stellarators 

See A. Koniges CP1.035
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NCSX Research Advances Fusion Science in 
Unique Ways

• Can limiting instabilities, such as external kinks and neoclassical tearing 
modes, be stabilized by external transform and 3D shaping? How are the non-
linear dynamics and disruptions affected?  How much external transform is 
enough?

• Can the collisionless orbit losses from 3D fields be reduced by designing the 
magnetic field to be quasi-axisymmetric?  Is flow damping reduced?  

• Do anomalous transport reduction mechanisms that work in tokamaks transfer 
to quasi-axisymmetric stellarators?  How much effective-ripple is too much?

• How do stellarator characteristics such as 3D shape, islands and stochasticity 
affect the boundary plasma and plasma-material interactions?

NCSX provides unique knobs to understand toroidal confinement 
fundamentals: rotational transform, shaping, magnetic symmetry.
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Plans for Proceeding
• Proposed milestones:
– Conceptual design review (CDR), April, 2002.
– Start Title I design, October, 2002.
– Start fabrication, October, 2003.
– First plasma, March, 2007

Bottoms-up cost and schedule will be developed for CDR.

• NCSX is using a proven project management approach
– similar to NSTX and TFTR D&D; both ahead of schedule and on budget.
– Follows DOE project management guidelines and orders

• NCSX will continue national team approach through all phases
– Combines the best talents and experience of DOE Labs and Universities
– Integrated team led by PPPL and ORNL, with numerous collaborators;   

similar to NSTX.
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Conclusions
• NCSX is an exciting opportunity for unique fusion science.

– Stabilize high-β modes with 3D shaping.
– Transport in low-collisionality quasi-axisymmetric system.

• NCSX provides innovative solutions to make magnetic fusion more attractive.
– Combine best characteristics of stellarators and tokamaks.
– Possibly eliminate disruptions; intrinsically steady state

• Strong linkages with all of magnetic fusion science, complementing other toroidal
confinement research programs.

• Physics basis for NCSX is sound, attractive configuration identified
– passive stability to kink, ballooning, vertical, Mercier, neoclassical tearing with β > 4%
– very good quasi-axisymmetry
– possible passive disruption stability
– Robust, flexible coil system

• Good plans are in place for going forward.


