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Theses

• An analytic tool has been developed to examine the effect
of 3-D shaping and profiles on the local properties of a 3-D
configuration –  ‘Local 3-D equilibria’

• The technique is illustrated for use in ideal MHD
ballooning studies.  Generic features of ballooning stability
in 3-D configurations are addressed.
– Ideal ballooning stability boundaries
– Unique features of 3-D - field line dependence of local eigenvalues
– Geometric interpretation
– Implications for global mode stability
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Motivation

• Theoretical insights into confinement improvement are anticipated to
lead to improved transport properties in stellarators.

• As confinement improves, β limits for stellarators become an issue.
• Since most stellarators operate with little current,

– Current driven kinks/tearing modes should not be an issue.
– NTM’s can be avoided with the proper choice of rotational transform

profile.

• The violation of the Mercier criterion does not seem to influence
confinement in stellarators or tokamaks (CHS, LHD, TFTR, JET, etc.).
– Growth rates slightly above marginality are feeble (S. Gupta, et al ‘02)
– Easily stabilized by finite gyroradius effects.
– Nonlinearly, structures at low-order rational that flatten-p (Ichiguichi et al,

‘02)
• Ballooning stability is a possible candidate for producing a β-limit.



The HSX Device
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The Helically Symmetric eXperiment

Quasihelical: Fully 3-D,
BUT Symmetry in |B| :

In straight line θ = ιφ
coordinates               ,

( )[ ]θφε mNBB h −−= cos10

( )[ ]φιε mNBB h −−= cos10

In HSX: N=4, m=1,
and ιιιι ~ 1

ιιιιeff = N-m ιιιι
=1/qeff ~ 3



Ballooning stability is an issue for stellarators

• Ideal ballooning stability is often used as an indication for β-limits in
stellarator designs.  To a large degree, most ideal ballooning stability
studies have been undertaken with specific designs in mind.

• Some of the existing devices have not been optimized to minimize
ballooning stability issues.  As such, many of the theoretically
predicted β-limits from ideal ballooning are rather small, β < 2%.

• However, exceptions to the small theoretical ballooning β-limits exist
(W7-X, NCSX), so ballooning does not seem to be a fundamental
problem for all stellarators.

• It is an open question experimentally, whether ballooning modes (or
any MHD instability) really provides a rigorous limit.

• It would be desirable to obtain a deeper physical understanding of the
structure of ballooning stability in stellarators.



Generating 3-D equilibria for stability calculation
is non-trivial

• The starting point for any stability analysis is a well-defined
equilibrium.

• While the equilibrium properties of axisymmetric configurations is
well understood.  -  ∆∗ψ = − R2p/ - FF/ - there is no general prescription
for constructing global solutions to the MHD equilibrium equations in
3-D
– Numerical methods - time consuming and unwieldy for parameter scans

– Singular currents at rational surface

– In general, islands are present.



A method for constructing “local” solutions of
3-D MHD equilibria has been developed

• The difficult aspect of studying 3-D shaping effects is the generation of
equilibria.  There is no rigorous Grad-Shafranov theory for
constructing global solutions to the MHD equilibrium equations for 3-
D systems.

• “Local” 3-D equilibrium = specification of the magnetic coordinates
mapping [or inverse mapping x(ψ,θ,ζ)] in the vicinity of the magnetic
surface ψ = ψo to sufficient order to describe J,B, p’ consistent with

One can explicitly construct solutions on the magnetic surface [see
PoP 7, (2000), 3921].

• The “small denominator” problem that plagues global solutions to the
MHD equilibria equations in 3-D can be avoided.  For local stability
criteria, we are concerned with the vicinity of a particular magnetic
surface.
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Local axisymmetric equilibria are useful for local
mode studies in tokamaks

• Parameter scans in tokamak equilibria can be performed by generating
sequences of Grad-Shafranov solutions.

• However, numerical solutions are time consuming - other methods
have developed to generate a series of MHD equilibria, localized to a
magnetic surface, without recomputing the entire Grad-Shafranov
solution.
– Connor, Hastie, Taylor, shifted circle equilibria (‘77) - no shaping
– Greene and Chance (NF ‘81) developed a generalized method for

constructing sequences of a equilibria on a particular flux sruface as
functions of two profile parameters (generalized s-α model).  This
technique is now routinely used in tokamak studies.

– Miller et al (PoP ‘98) generalized this technique by allowing for variations
in axisymmetric shaping parameters.
•Used for studies on the effect of shaping on localized MHD instabilities
and microinstabilities (Waltz and Miller, PoP ‘99).

• This work has been generalized to 3-D systems



Local 3-D equilibria are specified by two sets of
quantities

• Local solution to MHD equilibria at ψ = ψo specified by:
– X(θ,ζ) and ιo on ψ = ψo (subject to constraints) where θ and ζ are

any straight field line coordinates.  Inverse mapping is convenient.
– Two flux function profiles

→Allows for easy manipulation of plasma profiles and 3-D shaping.
→ Allows one to build intuition of the effect on local stability

criterion; construction of stability boundaries as functions of
profiles (s-α curves) and 3-D shaping parameters.

→ Allows one to examine the sensitivity of a given configuration to
changes in the equilibrium.
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The choice of X(θθθθ,,,,ζζζζ) determines geometric
properties of local equilibria

• From X(θ,ζ) and ιo, one derives expressions for the unit tangent and
normal vectors

–  κn  = normal curvature
–  κg  = geodesic curvature
–  τn  = normal torsion ~ the `twist’ of a field line
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Frenet’s equations describe the “evolution”
properties of the basis set

• “Evolution” properties for the orthonormal basis of unit vectors, b, n,
b×n satisfy a variant of Frenet’s formulae

• The curvature and torsion vectors describe the fundamental geometric
properties of the field line.

– ‘Bad’ curvature accesses the pressure gradient free-energy for
instability drive.
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The local shear is influenced by magnetic
geometry and plasma profiles

• The local shear enters in describing the stabilizing role of magnetic
field line bending energy in MHD stability theory.

• Normal torsion τn and parallel plasma currents are related to local
shear by an identity.

• The average shear is calculated from a flux surface average of the
identity
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Both magnetic geometry and profiles affect the
local shear properties

• Local shear  s = J||/B - 2τn

• Parallel current = net current + Pfirsch-Schluter currents

• Geometry
–  κg

–  τn

• Profiles
– dp/dψ
– dι/dψ

• Net current needs to be consistent with averaged shear equation
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The Mercier criterion has a simple form when
“geometry” is distinguished from profiles

• The Mercier criterion for localized interchange modes is given by

• Here, WM
  is a purely geometric object (Greene and Chance, NF ‘81; Greene ,

PPCF ‘97).

where

• The stability boundaries (DI = 1/4) is a parabola in profile parameter space.
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A local helical axis equilibrium can be
constructed

• A model quasi-helically symmetric configuration,
– B ~ B(Nζ−θ)  → κn, κg dominated by a single harmonic

η = Νζ − θ

• Local helical axis equilibria specified in cylindrical coordinates
[R,φ = −ζ ,Z]

• In the limit N2∆/Ro >> 1 > N∆/Ro

• The curvature vector is dominated by a single harmonic, the normal
torsion contains a symmetry breaking harmonic
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Ideal MHD stability boundaries can be obtained
as functions of profiles and shaping

• Ballooning equation for local axis equilibria, η = Nζ - θ labels points
along the field line,

• Integrated local shear (χ = field line label)

• 2 profile quantities

• Geometric quantities

• For το, δ → 0, ballooning equation is equivalent to axisymmetric
circular equilibrium corrected for the change in the “connection length”
qR → Ro/(ιo-N)
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Symmetry breaking contributions to the local
shear reduce first stability boundaries and

eliminate the second stable region

• Ideal stability boundaries for δ
= 0, 0.15, 0.3, 0.45 (τo = 0, k =
π2/8).

• Solid line is the perfectly
symmetric case - equivalent to
the s-α tokamak equilibra

• With increasing symmetry
breaking in the local shear-
stability degrades.

• Instability is indicated if a
single field line at a single value

of ηk is unstable.



The ballooning eigenvalues are field line
dependent in the small average shear region

• Ballooning eigenvalue Ω2 =
Ω2(χ) with δ = 0.45,  χ = 0,
0.85, 1.7, 2.55 (different field
lines on the same magnetic
surface).

• Local instability criterion is
violated on a subset of the
magnetic surface’s field lines

• Unique property of 3-D.
- For a particular value of s

and α, mix of ‘unstable’
and ‘stable’ field lines on
every surface.



Characteristics of the analytic model are
reproduced even when some of asymptotic

relations are relaxed

• Local equilibrium defined by

with N = 10, ∆/R = 0.01875,
ρο/Ro = 0.1

–  No second stable region

–  Field line dependent
eigenvalues
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The HSX standard case shows no second stable
region

• The HSX standard
configuration with N = 4, |B| ~
B(ψ)[1 - εhcos(Nζ-θ)],

Ro = 1.2 m, <a> = 0.15 m,
average helical excursion of
axis = 0.2m.  Typical transform,
ιaxis ≅1.05, ∆ι ≅0.07

• Characteristic ballooning
instability violated at β ≅0.7%



Other magnetic configurations available to HSX
do not seem to dramatically alter the ballooning

stability properties

• HSX has a variety of
configurations, including one
with a deep magnetic well, ιaxis
≅1.14, ∆ι ≅0.1, and one with
mirror terms, ιaxis ≅1.05, ∆ι
≅0.07.

• While quantitative predictions
for ballooning stability onset
are different, the structure of the
stability boundary is not
radically different from the
standard quasi-helical case.



A geometric interpretation of the results

θ→       Bad curvature in blue

ζ

⇓

• For a tokamak, curvature is
unfavorable near θ = 0.

• Ballooning instability ensues
when regions of small local
shear intersect regions of bad
curvature



The pressure gradient affects the local shear

Local shear for a tokamak

≅  s - α cos(θ)
– At small pressure gradient,

local shear ≠ 0.

θ→  Local shear with s ~ α

ζ

⇓

– At moderate pressure gradient,
s ~ α, instability

– At high α, local shear ~ 0 point
migrates away from θ = 0

θ→  Local shear at higher α

ζ

⇓



Overlap of bad curvature region with regions of
small local shear indicate instability

• Overlap of bad curvature and
small local shear indicate
instability

θ→

ζ

⇓

• Second stability occurs at
sufficiently high Grad-p
(Greene and Chance, NF ‘81)

θ→

ζ

⇓



Let’s consider the stability properties of a quasi-
helically symmetric configuration

• Consider a quasisymmetric
configuration with curvature

–  κn ~ cos(Nζ − θ)

• More general 3-D
configurations would have
more structure in |B| and hence
affects detailed quantitative
comparions, but this simple
example provides a useful
illustration,

θ→

ζ

⇓



The local shear of 3-D configurations do not
generally have the symmetry as the curvature

• Model local shear for quasi-
helically symmetric device

≈ s - α cos(Nθ−ζ) − δcos(Nζ)

θ→ For α = 0

ζ

⇓

• At small α, the helical content
of the local shear differs from
the curvature

• At higher α, small local shear
region deforms

θ→ For α ≠ 0

ζ

⇓



The lack of a continuous symmetry adversely
impacts the local stability properties

Overlap of bad curvature and small
local shear regions,

Θ→

Ζ

⇓

• Overlap occurs at α = 0

• Highly field-line dependent

• At small α, zeroes of the local
shear occur as functions of an
angle that is incommensurate
with the |B| symmetry.

• At higher α, the small local
shear region deforms, but in
general it is difficult to find a
case where local shear nulls
avoid bad curvature regions.



The stability properties of 3-D systems differ
from symmetric systems in a number of ways

• Local criteria “predicts” instability at a critical pressure gradient.
Criteria violated initially on a single field line on a particular magnetic

surface.

Local criteria violation = β−limit?

Highly localized

Easily FLR stabilized?

Small nonlinear saturated amplitude?

Global mode structure? (non-integrability of WKB ray equations - 
Dewar and Glasser, PF ‘83).

Reliance on local stability criterion = over constraining experimental
designs?



Summary

• A technique is introduced to manipulate profile and shaping properties of 3-D
configurations.  → “Local 3-D equilibria” → Allows one to map out regions of
stability for localized modes as functions of 3-D shaping and profile effects.

– Also applicable to transport, microinstability calculations

• An example local helical axis model is introduced to emphasize the technique.
→  Allows one to adjust analytically the strength of symmetry breaking terms
in the local shear.

• Ideal MHD ballooning stability boundaries are calculated for the helically
symmetric equilibria.

– Sensitivity to symmetry breaking terms in the local shear,
– Deterioration of the first stability boundary, reduction and/or elimination of second

stability regimes.
– Field line dependent eigenvalues.


