REVIEW OF MODERN STELLARATOR REACTOR STUDIES

J. F. Lyon, ORNL

ARIES Meeting October 2-4, 2002

TOPICS

- Special Features of Stellarators as Reactors
- Modern Stellarator Reactor Studies
- Results from Garching Reactor Studies
- Compact Stellarator Reactors

Stellarators Have Pros and Cons as Reactors

- Advantage -- ignited, inherently steady state
 - no recirculating power to plasma
 - * no need for current drive
 - no pulsed loads, higher availability
 - not subject to disruptions, current-driven modes
 - flux surfaces nearly independent of plasma current
 - stable against external kinks and vertical instability without a close conducting wall or active feedback
- Disadvantage -- non-axisymmetric plasma
 - requires complex, nonplanar coils relatively close to the plasma ⇒ usually very large major radius
 - vacuum vessel, divertor and maintenance geometry more complex

Compact Stellarator Approach

- Stellarators have distinct advantages as reactors
 - no disruptions, even at the highest $\beta \Rightarrow$ less margin needed
 - maximum density determined by power, not disruptions
 - no current drive ⇒ low recirculating power, more flexibility and control in the operating point
- However, normal stellarators lead to large reactors
- Compact stellarators (stellarator + tokamak features)
 - optimized neoclassical transport, reduced below anomalous
 - bootstrap current incorporated in the optimization
 - aspect ratios ranging from 2 to 4 ⇒ smaller, lower cost than present designs in the non-US program
 - $\langle \beta \rangle > 5\% \implies$ similar to latest tokamak reactor (ARIES-RS)
- NSCX and QPS experiments are designed to test these characteristics

Stellarators are **DIFFERENT** from Tokamaks, STs and R FPs as Reactors

- Non-axisymmetry requires complex, nonplanar coils relatively close to the plasma
 - cannot move TF coils back from the plasma to make room for blankets and shielding as in other concepts
- Complex 3-D magnetic fields means
 - no simple scaling laws for β limits, confinement
 - divertor and maintenance geometry more complex
 - systems code must incorporate complex coil geometry and stellarator physics -- no geometry scaling studies

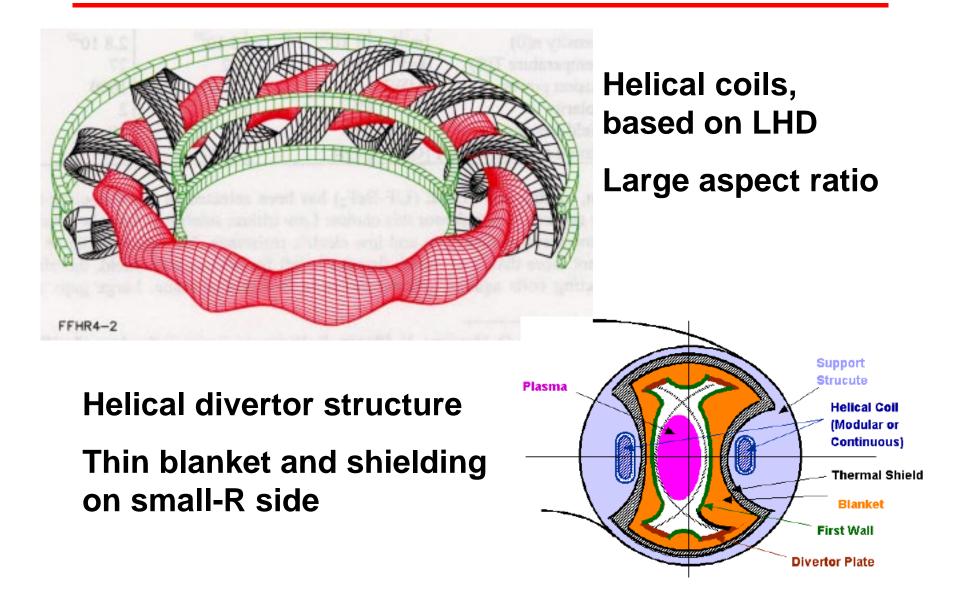
Modern Stellarator Reactor Studies

• NIFS MHR studies

- based on LHD-like geometry with helical coils

Garching ASRA6C study

based on W 7-AS/X-like geometry with modular coils


• ARIES SPPS study

- based on MHH geometry with modular coils
- used ARIES costing and reactor component algorithms
- aggressive physics and technology

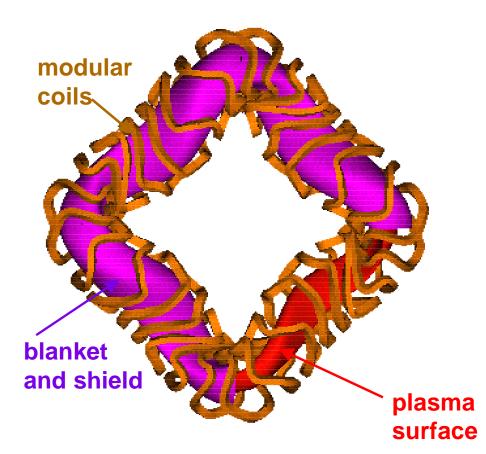
Garching HSR studies

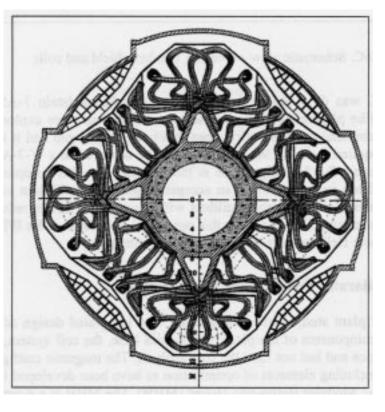
- based on W 7-X geometry with modular coils
- conservative physics and existing technology (NbTi coils)
- NCSX & QPS reactors

NIFS Reactor Studies

NIFS Reactor Studies

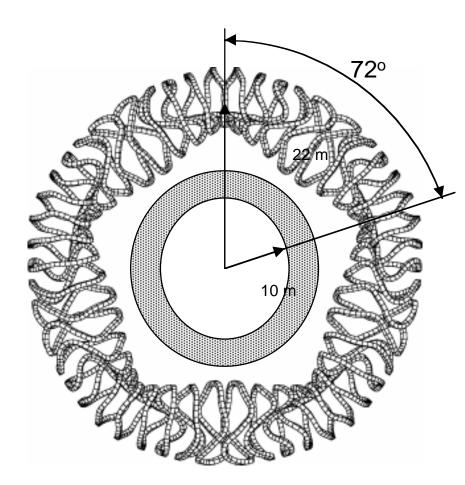
LHD-based MHR and Force-Free FFHR


Name of Reactor Design	LHR/MHR-S	LHR/MHR-C	FFHR-1	FFHR-2
Major Radius R (m)	16.5	10.5	20	10
Average Plasm Radius a (m)	2.4	1.5	2	1.7
Toroidal Field B (T)	5	6.5	12	10
Maximum Coil Field B _{max} (T)	14.9	14.7	16	13
Average Plasma Density <n> (10²⁰/m³)</n>	2	3.4	1	1.4
Average Plasma Temperature <t> (keV</t>	7.8	7.8	11	13.5
Volume Average Beta β (%)	5	5	0.7	0.59
Enhancement Factor Designed	2 (LHD)	2 (LHD)	1.5 (LHD)	2.5 (LHD)
Thermal Power PFT (GW)	3.8	2.8	3	1
Effective Heating Power (MW)	600	400	200	400
Energy Confinement Time τ _E (s)	2.67	1.5	3.7	1.8
LHD scaling (s)	1.24	0.79	2.46	0.76
GRB scaling (s)	1.30	0.69	2.42	0.75
LG scaling (s)	1.66	0.89	3.58	0.90
ISS95 scaling (s)	1.20	0.66	2.52	0.76
New LHD-1 (heliotron-type) (s)	2.70	1.30	6.13	1.71
New LHD-2 (all helical) (s)	1.62	0.87	4.64	1.04


Garching ASRA6C Study

Based on large *R*/*a* W 7-AS/X geometry

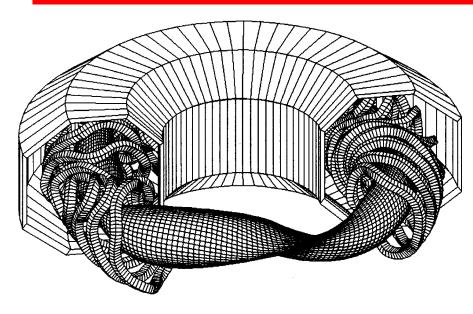
ARIES SPPS Study

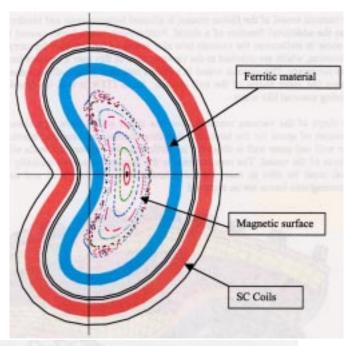

SPPS based on W7-X like configuration, but aimed at smaller size • R₀ = 13.9 m, <β> = 5%

ARIES SPPS (MHH) Study

the subscript of the second		ASRA6C	MHH
Major radius	[m]	20	14
Av. radius of coils	[m]	4.57	4
Coil current	[MA]	18	13.8
Number of modular coi	ils	30	32
Av. plasma radius	[m]	1.6	1.63
Number of field period		5	4
Field on axis	[T]	5.3	5
Max. field on coils	[T]	10.4	14.5
Magnetic energy	[GJ]	117	80
Av. beta [%]		5	5
Thermal output	[MW]	4000	2290

Fusion power, PF (GW _{th})	1.73
Thermal conversion efficiency, η_{TH}	0.46
Thermal power, PTH (GWth)	2.29
Gross electrical power, PET (GWe)	1.05
Net electrical power, PE (GWe)	1.0
Recirculating power fraction, ϵ	0.052
Plant capacity factor, pf	0.76
Total direct cost (B\$)(^a)	2249
Total capital cost (B\$)(^b)	4340
Cost of electricity, COE (mill/kWeh)(°)	74.6

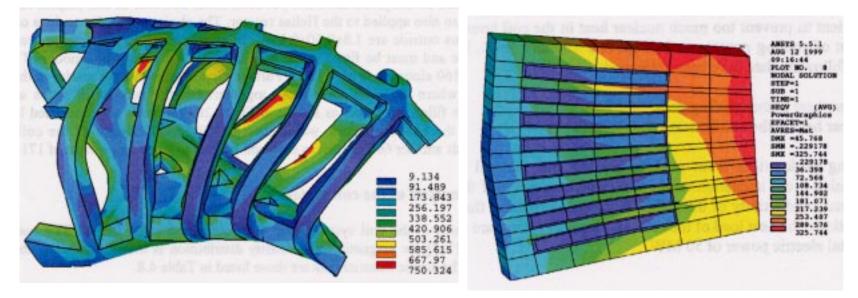

HSR Reactor Based on Wendelstein 7-X



Based on conservative physics, technology

- Major Radius 22 m
- Ave. Plasma Radius 1.85 m
- Plasma Volume 1400 m³
- Rotational Transform 0.87 0.98
- Magnetic Field 5 T
- Max. Magnetic Field 10 T
- Number of Coils 50
- Magnetic Energy 100 GJ
- $<\beta>$ = 5%; NbTi SC coils

Garching HSR Studies

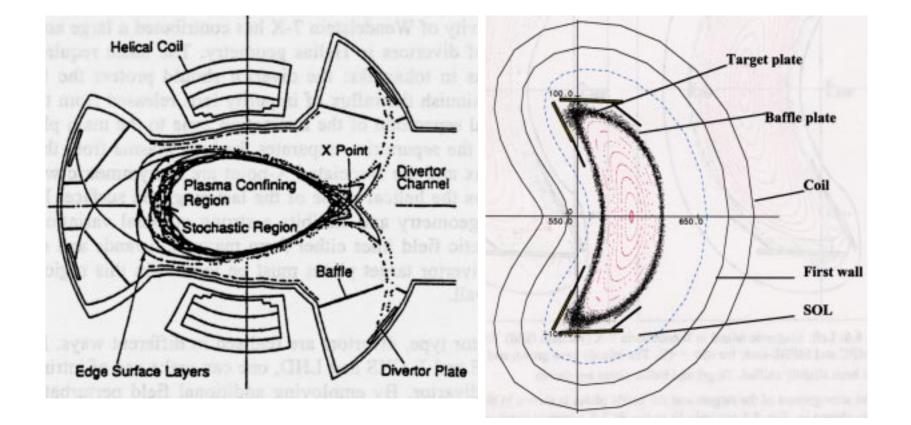

10	HSR 4/18/i	HSR4/18	HSR 5/22	
Major radius	18	18	22	[m]
Av. minor radius	2.1	2.1	1.8	[m]
Plasma volume	1524	1524	1407	[m ³]
Iota(0)	0.86	0.83	0.84	
Iota(a)	0.97	0.96	1.00	
Av. field on axis	4.4	5	4.75	[T]
Max. field on coils	8.5	10.3	10.0	[T]
Number of coils	40	40	50	
Magnetic energy	76	98	100	[GJ]
Fusion power	1500	3000	3000	[MW]

HSR Coil Calculations

- Design of NbTi conductor
 - Al jacket, cable, conductor, insulation
- Winding pack design, fabrication
- Coil support system, stress analysis
- Coil cooling, fault protection
- Other component calculations
 - effect of ferritic steel on magnetic configuration
 - effect of finite- β on magnetic islands
 - thermal loading on divertor plates
 - spatial distribution of neutron power and radiation on first wall

HSR Coil Calculations

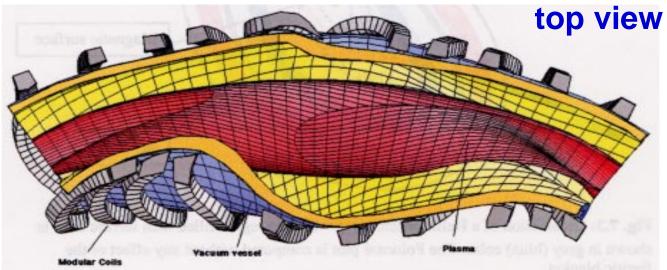
Van Mises Stresses

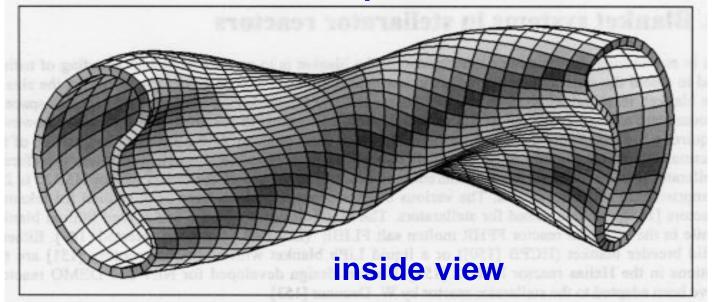


Coil housing ≤ 750 MPa

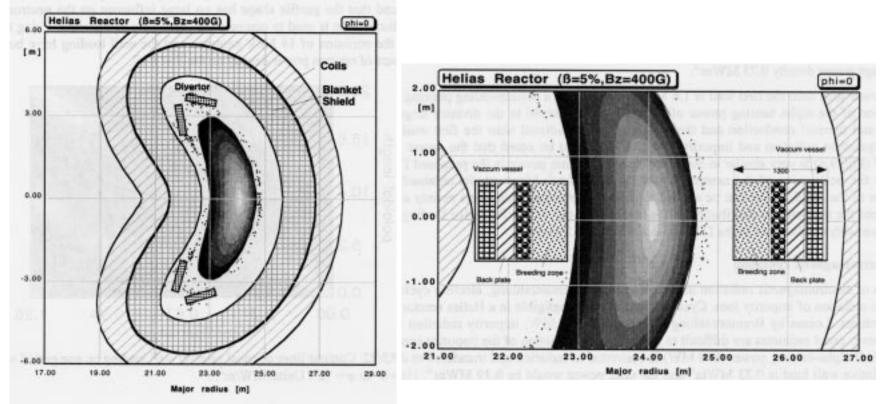
Coil ≤ 70 MPa

1.8K superfluid He, 10 T max on coils


Divertor Concepts

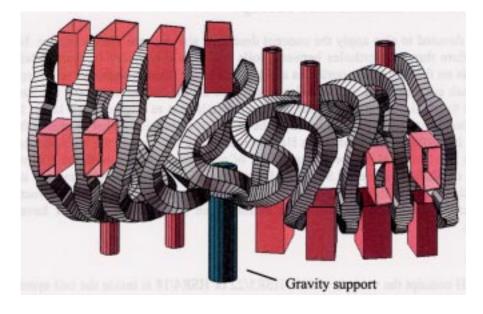

LHD helical divertor

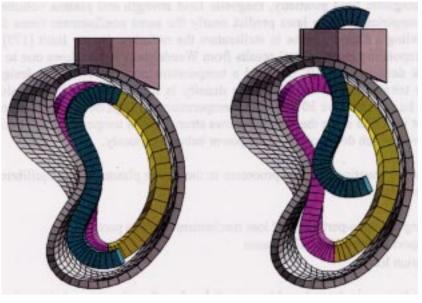
W 7-X divertor


HSR Vacuum Vessel Geometry

one field period

HSR Blanket Approach



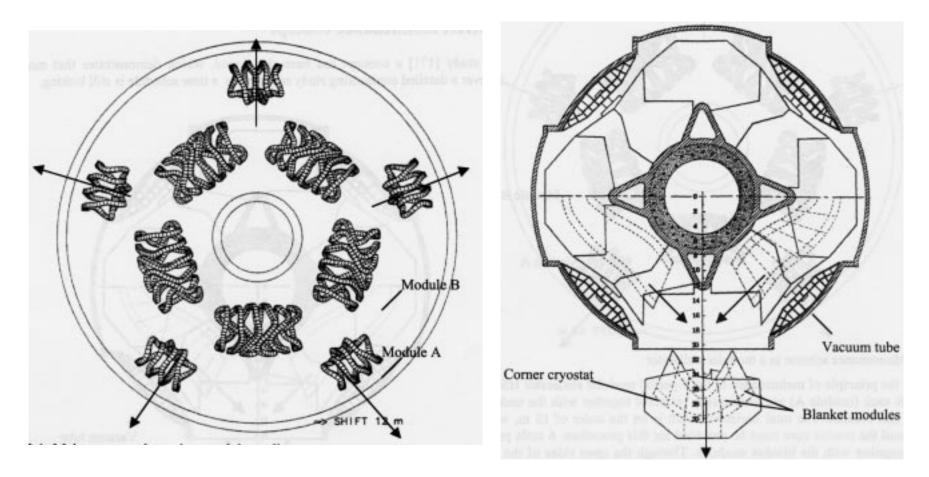

1.2-m blanket thickness Plasma-first wall distance = 0.3 m; 3200 m² wall area Plasma-coil distance ≥ 1.5 m Blanket + vacuum vessel = 1.3 m

water-cooled Pb-¹⁷Li blanket

HSR Maintenance Concept

• HSR5/22: small modules thru ports

One field period of the coil system with ports

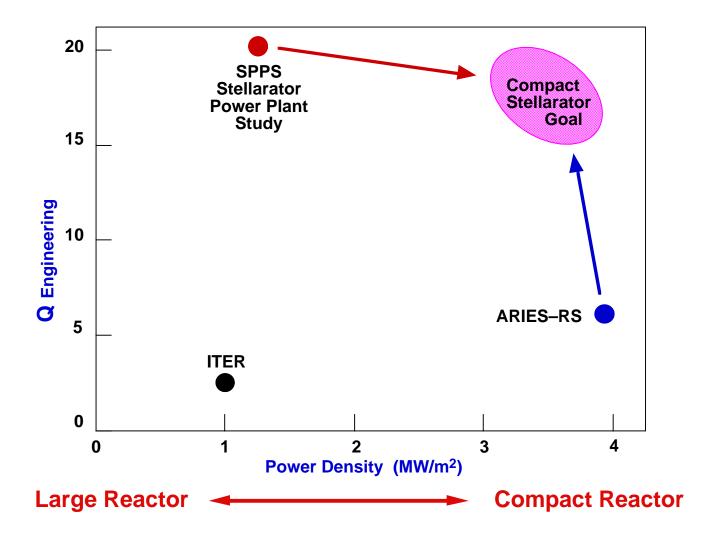

Maintenance scheme for blanket segments

Alternate Maintenance Concept

Radial/toroidal movement of large modules

ASRA6C

SPPS

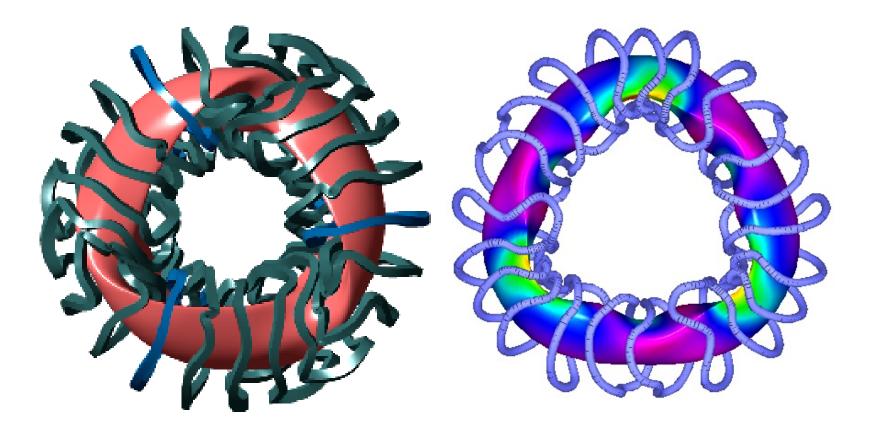

Power Plant Issues

- Thermal cycle, recycling power
- Safety issues

magnet and plasma energy reservoirs

- Plasma control
 - position and density control
 - startup to ignition, power level, shutdown
- Tritium inventory, decay heat
- Cost vs. size tradeoffs

A Compact Stellarator Could Combine the Best Features of Tokamaks and Stellarators!



- Compact, power density similar to tokamaks
- Without disruptions, feedback, or external current drive

Compact Stellarators Could Lead to a Better Reactor

- 14-m SPPS (with lower wall power density) was cost competitive with 6-m ARIES-IV and 5.5-m ARIES-RS because of its low recycled power (high Q_{eng})
- CS's can retain low recycled power of SPPS, but has smaller size (lower cost) and higher wall power density, so could have lower cost of electricity
- However, the power produced is more than the 1 GW_{e} assumed in the ARIES studies (β margin)
- The details of plasma shapre, coil geometry, size, field, and wall power density need to be studied further to optimize a reactor

Reactors Based on NCSX & QPS

NCSX variant Quasi-<u>Axisymmetric</u>

QPS variant Quasi-Poloidal

Scaled 1-GW Compact Stellarator Reactors with $B_{max} = 12 \text{ T}, \langle \beta \rangle \leq \beta_{limit}, \text{ H-95} \leq 5$

	QA#1	QA#2	QP#1	QP#2
Plasma aspect ratio R/ap	2.96	4.4	2.70	3.70
Volume average β limit $\langle \beta \rangle_{\text{limit}}$ (%)	4	4.1	10	15
Average major radius R (m)	8.22	9.93	7.34	7.84
Average plasma radius ap (m)	2.78	2.26	2.72	2.12
Plasma volume V _{plasma} (m ³)	1250	1000	1040	690
On-axis field B_0 (T)	5.41	5.65	5.23	5.03
$\tau_{E}/\tau_{E}^{ISS95}$ multiplier H-95	2.65	2.62	3.61	4.42
Volume average beta <β> (%)	4	4.1	4.6	6.2
Energy confinement time τ_{E} (s)	2.69	2.41	2.49	2.01
Volave. density $\langle n \rangle$ (10 ²⁰ m ⁻³)	1.31	1.50	1.40	1.70
Density-average $\langle T \rangle$ (keV)	11.1	10.8	11.3	11.5
Neutron wall load Γ_n (MW m ⁻²)	1.34	1.37	1.54	1.85

Scaled 2-GW Compact Stellarator Reactors with $B_{\text{max}} = 12 \text{ T}, \langle \beta \rangle \leq \beta_{\text{limit}}, \text{ H-95} \leq 4$

	QA#1	QA#2	QP#1	QP#2
Average major radius R (m)	10.35	12.51	7.34	7.85
Average plasma radius ap (m)	3.50	2.84	2.72	2.12
Plasma volume V _{plasma} (m ³)	2500	2000	1070	700
$\tau_{E}/\tau_{E}^{ISS95}$ multiplier H-95	2.07	2.04	3.56	3.94
Volume average beta $\langle \beta \rangle$ (%)	4	4.1	6.5	8.75
Energy confinement time τ_{E} (s)	2.69	2.41	1.76	1.42
Volave. density $\langle n \rangle$ (10 ²⁰ m ⁻³)	1.31	1.50	1.62	2.40
Neutron wall load Γ_n (MW m ⁻²)	1.69	1.72	3.07	3.68

Lessons Learned

- Non-axisymmetry requires complex, nonplanar coils relatively close to the plasma
- 3-D magnetic fields means more complex vacuum vessel, divertor and maintenance geometry, no geometry scaling studies with a systems code
- Plasma-coil spacing and coil bend radii are more important than the plasma configuration or aspect ratio
- Can't just enlarge an experiment to reactor size; reactor considerations are different