Ferritic Steel Lifetime Assessment and Self-Consistent Nuclear Parameters for ARIES-IFE-HIB

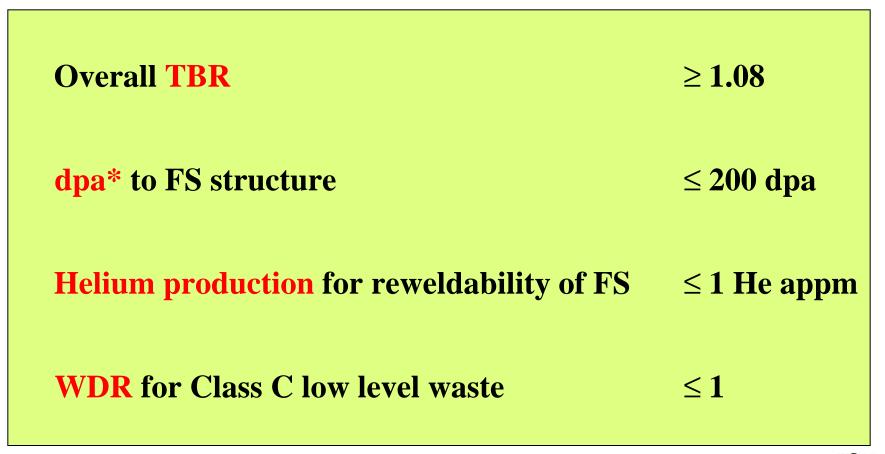
L. El-Guebaly Fusion Technology Institute University of Wisconsin - Madison

with input from M. Sawan, R. Peterson, P. Wilson, E. Mogahed (UW), M. Billone (ANL), R. Moir, S. Reyes (LLNL), and P. Peterson (UCB)

> ARIES Project Meeting October 2-4, 2002 PPPL

Objectives

- Assess nuclear performance of structure-free blanket concept using ARIES design rules
 - Breeding potential of candidate breeders:
 - Flibe
 - Flinabe.
 - Lifetime of ODS ferritic steel (FS) protected with liquid blanket
 - Waste disposal rating and Helium production for structural components: shield, nozzles, feeding tubes.
- Estimate reduction in waste for thick liquid wall concept.

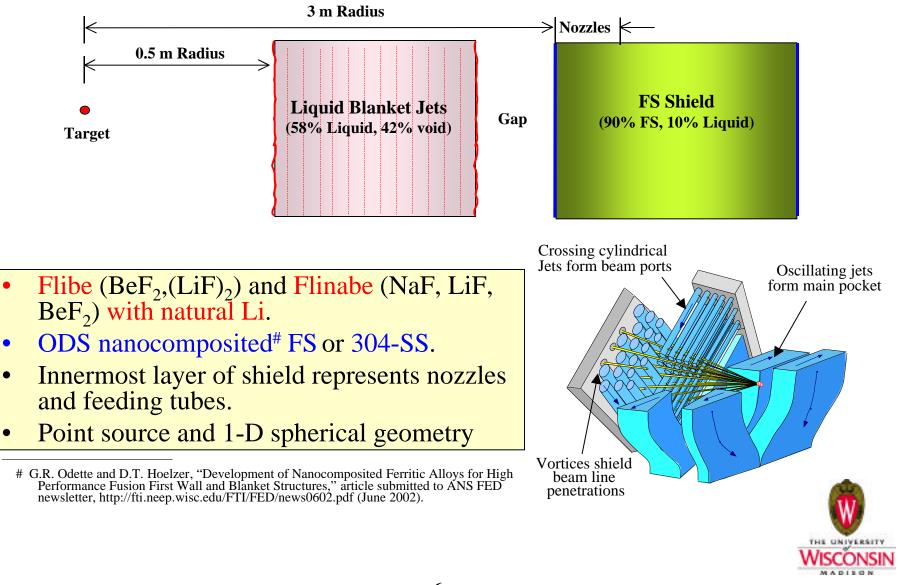


Key Parameters

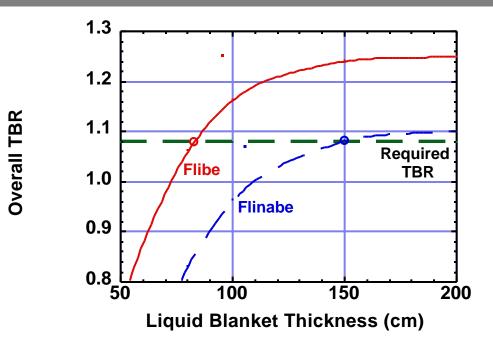
Target yield	458.7 MJ
Rep rate	4 Hz
# of pulses	126 million/FPY
Average source neutron energy	11.75 MeV
Neutron power	1286 MW
Neutron wall loading @ 0.5 m	410 MW/m^2
Penetrations coverage	3%
Plant lifetime	40 FPY
Availability	85%

ARIES Requirements and Design Limits

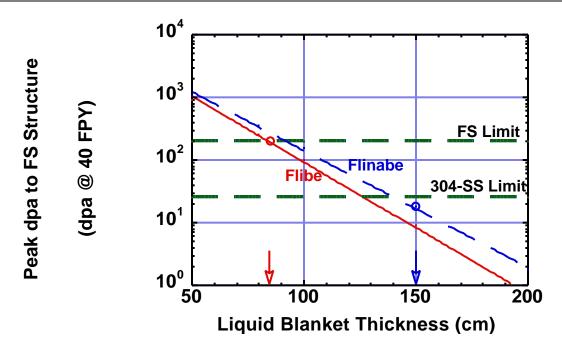
* Thermal creep strength @ EOL is more restrictive than radiation damage, per M. Billone (ANL).



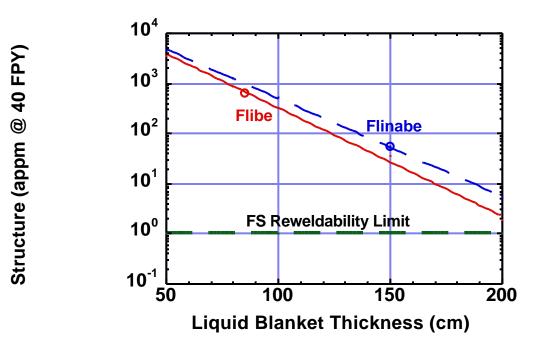
Flibe vs Flinabe


- Flinabe has substantially lower melting point (~320°C) compared to Flibe
 (459°C), offering low-operating temperature and low-vapor pressure.
- To provide very low-vapor pressure in HIF beam tubes and protect structure against x-rays and target debris, Per Peterson (UCB)
 recommended Flinabe to create low-temperature vortices.
- It is preferable to have single liquid composition everywhere (in chamber and beam tubes), if acceptable from perspectives of breeding and safety.

Schematic of Radial Build

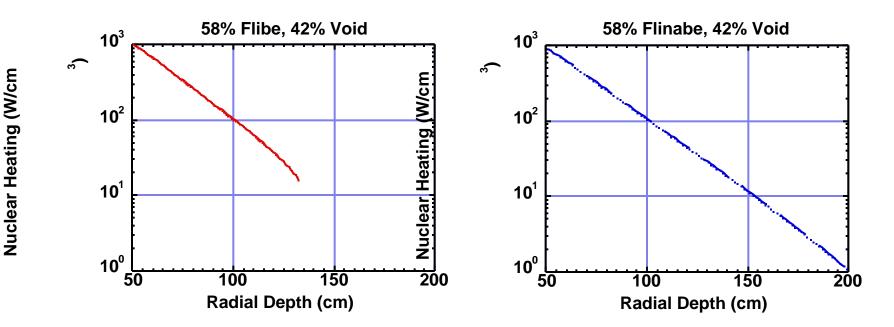

Flibe Breeds more Tritium than Flinabe

- 83-cm thick Flibe and 150-cm thick Flinabe meet ARIES breeding requirement (TBR 1.08).
- Enrichment does not enhance breeding of thick Flinabe.
- Nuclear energy multiplication amounts to ~1.25.
- ~10% of heating deposited in shield behind Flibe and 1% of heating in shield behind Flinabe.


For Same Blanket Thickness, Flibe Provides Better Attenuation than Flinabe

- 85-cm Flibe blanket meets FS 200 dpa limit.
- 1.5 m Flinabe blanket provides better shielding and meets 25 dpa limit for 304-SS.

Helium Production is Excessive



Peak Helium Production at FS

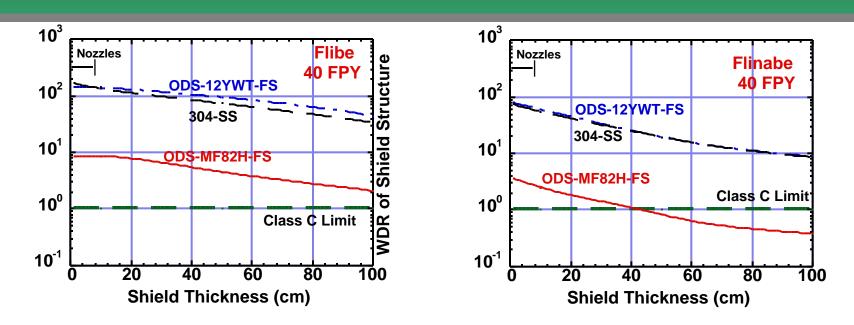
Innermost shield layer/nozzles/feeding tubes cannot be re-welded at any time during operation.

Nuclear Source Term for Aerosol Calculations

- Heating evaluated at mid plane per unit volume of actual blanket composition.
- For isochoric heating analysis, detailed heating in fine meshes and time-dependent nuclear heating will be computed on request.

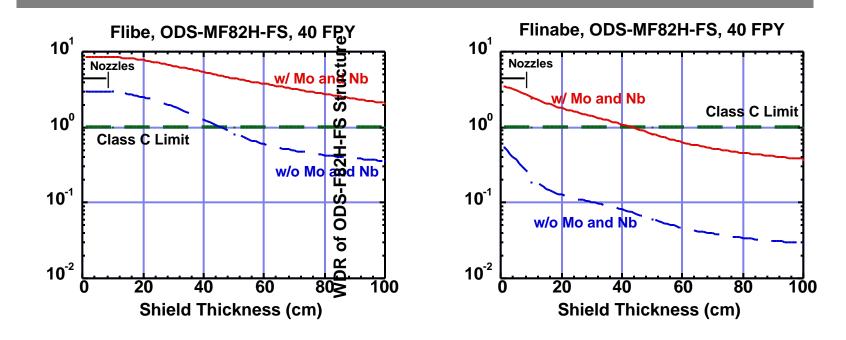
Steel Composition (in wt%)

	ODS-12YWT-FS* (Experimental Alloy)	ODS M-F82H-FS**	<u>304-SS</u> #
Fe	83.818	87.891	70.578
C	0.052	0.04	0.046
N	0.014	0.005	0.038
O Si P S Ti	0.16	0.13	—
Si	0.1	0.24	0.47
P	—	0.005	0.026
S	0.001	0.002	0.012
	0.35	0.09	0.03
V	0.01	0.29	
Cr	12.58	8.7	17.7
Mn	0.05	0.45	1.17
Co	- 27	0.0028	0.1
Ni	0.27	0.0474	9.3
Cu	0.02	0.01	0.2
Nb	0.01	0.00033	- 22
Mo	0.02	0.0021	0.33
Ta	$\frac{-}{2}$ 4.4	0.08	—
W	2.44	$\frac{2}{2}$	_
Y	0.16	0.7	

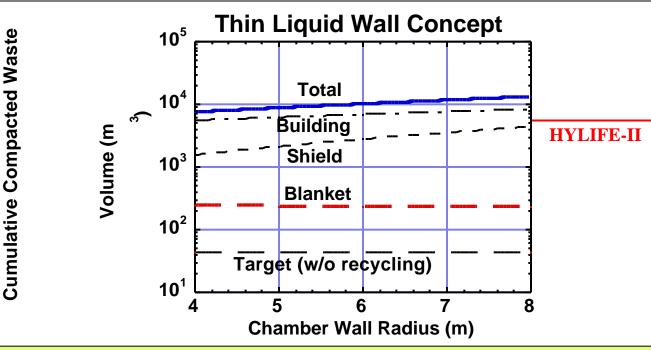

 R. Klueh et al., "Microstructure and Mechanical Properties of Oxide Dispersion-Strengthened Steels" fusion materials semiannual progress report for the period ending June 30, 2000 (DOE/ER-0313/28), pp. 123-130. Fe-12Cr-3W-0.4Ti-0.25Y₂O₃ (12YWT) experimental alloy.

** IEA Modified F82H FS + 0.25wt% Y₂O₃, per M. Billone (ANL). Other elements include: B, Al, As, Pd, Ag, Cd, Sn, Sb, Os, Ir, Bi, Eu, Tb, Dy, Ho, Er, U.

Starfire report: C. Baker et. al, "Starfire-A Commercial Tokamak Fusion Power Plant Study," Argonne National Laboratory Report, ANL/FPP-80-1 (1980).


All Alloys Generate High-Level Waste

- ODS-MF82H-FS offers lowest WDR.
- Thicker Flinabe blanket results in lower WDR.
- Main contributors to WDR: ⁹⁴Nb (from Nb), ⁹⁹Tc (from Mo), and ¹⁹²ⁿIr (from W).
- Potential solutions to meet waste requirement (WDR < 1):
 - Control Mo and Nb,
 - Thicken blanket.



Effect of Mo and Nb on WDR

- In practice, Mo and Nb impurities cannot be zeroed out. Actual level depends on \$/kg to keep Mo and Nb < 1 wppm.
- Flibe shield with Mo/Nb control should be > 50 cm thick to qualify as LLW.
- Flinabe shield without Mo/Nb control meets waste requirement if 45 cm thick.
- Nozzles/feeding tubes generate high level waste unless protected by thicker blanket **or** mixed with shield and disposed as single unit at EOL.

Revisiting Logic Behind Thick Liquid Wall Concept

- Thick liquid wall concept developed to eliminate blanket replacement, reduce waste, and increase availability by 10% 20% lower COE, per R. Moir (UCRL-JC-115748, April 1994).
- In IFE solid wall designs, blanket generates only 2-4% of total waste.
 - \Rightarrow Thick liquid wall concept offers <u>small</u> waste reduction.

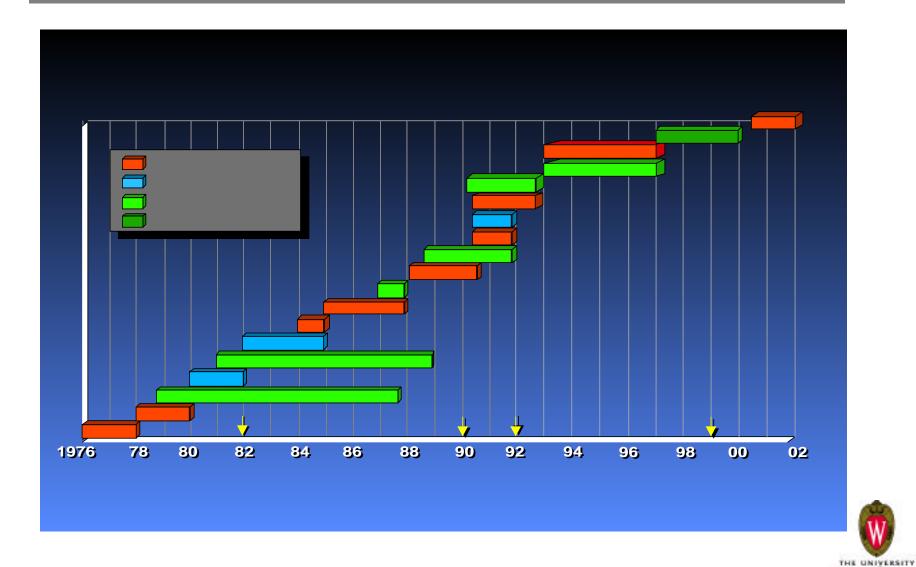
(same conclusion made for MFE - APEX project)

Conclusions

- Class C LLW requirement is more restrictive than breeding and dpa requirements.
- No breeding problem identified for Flibe and Flinabe.
- 85/150-cm thick Flibe/Flinabe blankets provide TBR of 1.08 and meet FS dpa limit.
- Helium production in FS is excessive and precludes FS reweldability during operation.
- All steels produce high level waste (WDR >> 1).
- ODS-MF82H-FS and Flinabe system offer lower WDR for FS structure.
- Low-level waste can be achieved with combination of Mo/Nb control **and** blanket/shield adjustment.
- Nozzles/Feeding tubes need additional protection to qualify as LLW unless combined with shield.

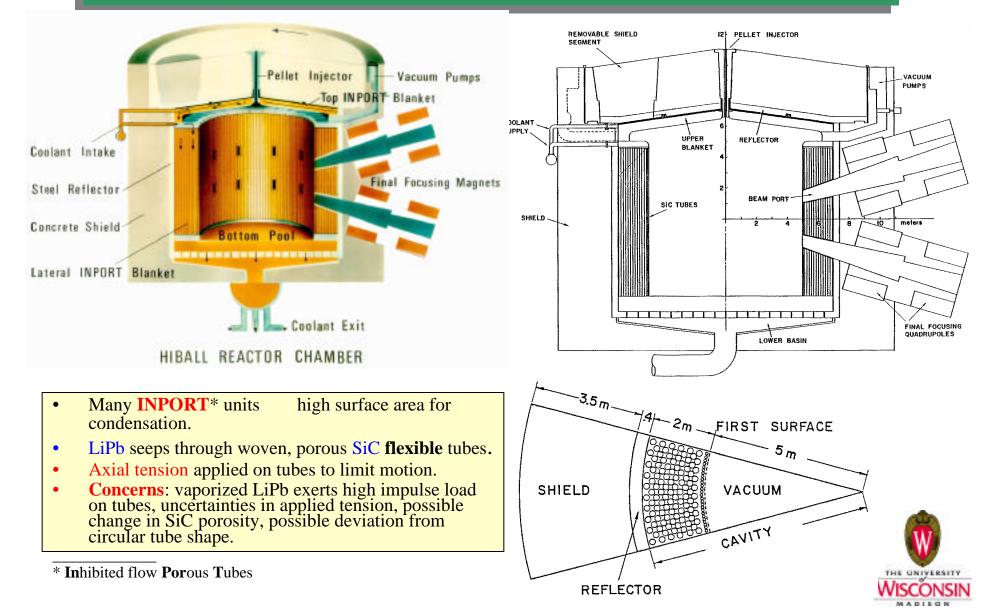
Importance of Results and What needs to be done

• Nuclear assessment is important to feasibility of thick liquid wall concept. Results show impact of thick liquid wall on: FS lifetime

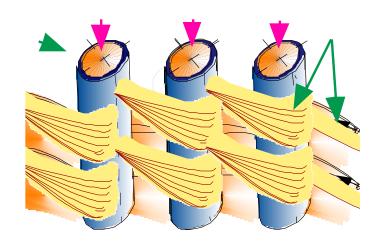

Waste level

Reduction in waste volume.

- **Design-specific analysis needed** to meet LLW requirement for nozzles and shield using:
 - Nb and Mo impurity control
 - Thicker blanket (adjust TBR)
 - Thicker shield.
- Need feedback from materials community on acceptable Nb and Mo impurity level and impact on FS unit cost.

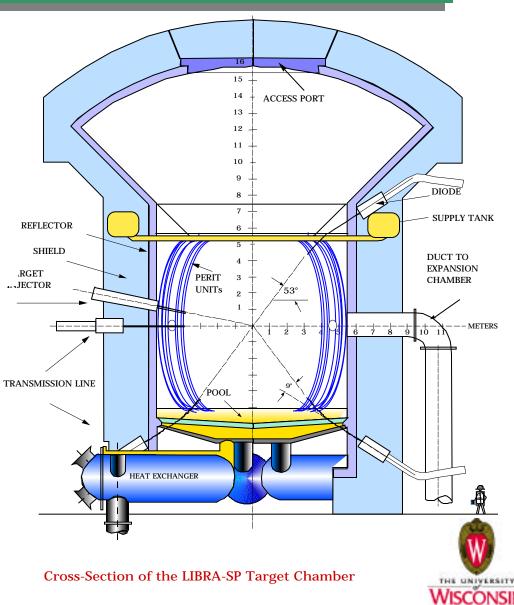


UW IFE Designs



WISCONSIN

UW IFE Design - HIBALL (1981)


UW IFE Design - LIBRA-SP (1995)

PERIT Unit

- Two rows of **PERIT*** unit:
 - Perforated to maintain wetted surface through jet fan spray
 - **Rigid** to withstand shock waves.
- LiPb coolant/breeder and FS tubes.

* Perforated Rigid Tube

