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Outline

• Overview: stellarator design & opportunities
• Issues, assumptions, and design goals
• Tools  
• Experience
• Summary & Next steps
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Stellarator Advances
• Understanding of how to design for orbit confinement, good flux 

surfaces
• Numerical design to obtain desired physics properties
• Experience in accurately constructing experiments at a range of 

scales (CE -> PE), with good confinement and stability

Allows effective use of Stellarator Advantages:
– Steady-state compatible,  lack of need for external current drive
– Disruptions typically not observed, can be avoided by design.
– 3D Shaping, to obtain desired physics properties: 

high-beta stability, good confinement



MCZ 021003    4

Two strategies for Orbit Confinement in 3D
3D shape of standard stellarators ⇒

field lines and particle orbits can have resonant perturbations, 
become stochastic ⇒ lost

B is bumpy every direction               ⇒ rotation is strongly damped

• ‘quasi-symmetry’
− Boozer (1983) Drift orbits & neoclassical transport depends on variation of  

|B| within flux surface, not the vector components of B !
− If  |B| is symmetric in “Boozer” coordinates, get confined orbits like tokamak
⇒ neoclassical transport very similar to tokamaks, undamped rotation

• Quasi-poloidal, Non-symmetric drift-orbit omnigeneity, linked mirrors…
− Toroidal and helical drifts cancel; align drift orbit with flux surface
− If could be done perfectly, would result in |B| independent of poloidal angle
− Principle of W-7X, new German superconducting experiment  (A=11)
− Principle of QPS design
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Optimized Stellarator Design Process 

Fixed Boundary 
Equilibrium Optimization

Coil Design
(to reproduced Fixed Bdry

Equilibrium)

Free Boundary Analysis
• Robustness/Flexibility
• Discharge Evolution

In depth analysis
• Flux surface quality 
• Transport
• Stability                             

Engineering Analysis

• Transport, stability, flux surface quality
• Engineering
• Edge analysis

• Process as first developed for W7-X,  used on HSX
– has been extended to address finite β, current, and low A for NCSX & QPS
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Helically Symmetric Experiment (HSX): 
Neoclassical Transport Reduction via 

Quasi-Helical Symmetry

R=1.2 m, B=1 T,  4 periods,  
R/〈〈〈〈a〉〉〉〉 = 8

Univ. of Wisconsin

In Boozer coordinates,
magnetic field looks like 
straight helix

First test of quasi-symmetry

started operation in 2000
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New  Design Process  (NCSX, QPS) 
Fixed Boundary 

Equilibrium Optimization

Coil Design
(to reproduced desired

Equilibrium)

Free Boundary Equilibrium
Optimization of coils In depth analysis

• Transport, stability, flux surface quality
• Engineering Analysis
• Edge analysis

• Only possible due to availability of parallel high-speed computers

Free Boundary Analysis
• Robustness/Flexibility
• Discharge Evolution

Healing of Islands

Find right neighborhoods
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NCSX Plasma Configuration Has Attractive Physics
• 3 periods, R/〈a〉=4.4, 〈κ〉~1.8  

• Quasi-axisymmetric: low helical ripple 
transport, low flow damping

• Passively stable at β=4.1% to kink, 
ballooning, vertical, Mercier,  
neoclassical-tearing modes; without 
conducting walls or feedback systems.

• Steady state without current-drive
• 18 modular-coils (3 shapes)

Full coil set includes PF coils & weak TF
• Coils meet engineering criteria

M45

Using Advances in Theory and Numerical modeling;  parallel computing 
(NERSC, ACL/LANL, Princeton/PPPL)



Choices, Choices
Stellarators provide very large configuration space

Need to identify
• Standard characteristics:  size, B, A, adequate confinement, stability,

coil-plasma separation for blankets & shield
• Number of field periods
• Orbit optimization strategy
• Rotational transform from coils
• Adequate alpha-particle confinement

– What loss level is tolerable?  Useful? 
• Number & topology of coils, limit on bend radii &c.

Stellarators are different, offer different possible choices
e.g. is MHD marginal stability necessary?



1713th Int. Stell. Works., Canberra  2001

Global Modes appear at intermediate ββββ-Values
Pressure driven (m,n) = (2,1) Modes around iota = 1/2

Global Modes appear at intermediate Global Modes appear at intermediate ββββββββ--ValuesValues
Pressure driven (m,n) = (2,1) Modes around iota = 1/2Pressure driven (m,n) = (2,1) Modes around iota = 1/2

X-Ray Tomograms reveal Ballooning Type Perturbation (always largest on outboard side)
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New  Design Process 
Fixed Boundary 

Equilibrium Optimization

Coil Optimization
(to reproduced desired

Equilibrium)

Free Boundary Equilibrium
Optimization of coils In depth analysis

• Transport, stability, flux surface quality
• Engineering Analysis
• Edge analysis

• Only possible due to availability of parallel high-speed computers

Free Boundary Analysis
• Robustness/Flexibility
• Discharge Evolution

Healing of Islands

Find right neighborhoods
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Primary Tool:  Numerical Optimization
STELLOPT   (ORNL & PPPL)

Expected
Coil Characteristics

3D Equilibrium Calc.
(VMEC)

MHD Stability
high- & low-n

Orbit Confinement

Flux Surface Quality

Transport  (simple)

. . .

Adjust Plasma Shape
(modified Levenberg-Marquardt, 
Differential Evolution, Genetic)

Optimization Variables
Can choose to vary: 
• Plasma Shape

~ 30-70 free parameters

• Coil Shapes
~ 200 – 400 f.parameters

• Coil Currents
~ 8 free parameters
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COILOPT – flexible Coil Optimization Tool
(D. Strickler, L. Berry, S. Hirshman,  ORNL)

• Varies filament coil shapes within a winding surface
• Varies winding surface shape
• Can vary coil current.  Can deal with different coil 
topologies  (modular, saddle, PF)

For fixed number of coils, targets:
– Bnormal mismatch
– Engineering criteria:  bend radius, separation
– Coil-plasma separation
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Established Equilibrium Codes Used
• VMEC - an ‘inverse’ equilibrium solver, which solves directly for 

the shape of the flux surfaces. Representation presumes that 
the flux surfaces are simply connected, without islands or 
stochastic regions. (Hirshman, ORNL)

• PIES - is a ‘forward’ equilibrium solver, directly calculating the 
3D magnetic field and current distribution, including simulating
the effect of islands and stochastic regions by flattening ∇ p.  
Flux surface topology and shape determined by integrating the 
field-line orbits. (Reiman, Monticello, et al, PPPL)

 Both well benchmarked against 2D equilibrium codes, each 
other, and against available other 3D equilibrium codes.

 VMEC compares well with SXR tomography on W7-AS.

 VMEC used for physics optimization,  
PIES used for island analysis and healing



Stability Codes and Their Validation
PPPL

VMEC [1]

TERPSICHORE [2]

CAS3D [3]

COBRA [4]
VVBAL [5]

Vertical mode  (N=0)

External kink modes (N=0 & 1)

high-n ballooning modes (n >>1)

infinite-n ballooning modes

Equilibrium 
code

Stability 
code

MHD modes

[1] Hirshman S. P. and Whitson, J. C., Phys. Fluids 26 (1983) 3553.

[2] Anderson, D. V. et al., Scient. Comp. Supercomputer II, (1990) 159.

[3] Nüehrenberg, C., Phys. Plas. 3, (1996) 2401.

[4] Sanchez, R. et al., J. Comp. Physics 161, (2000) 576.

[5] Cooper, W. A., Phys. Plasmas 3, 275(1996)



Ballooning Codes: Terpsichore-VVBAL and Cobra
PPPL

• Cobra solves the ideal ballooning mode equation for eigenvalue γ2:

ργ2k2
⊥
B2

Φ−B · ∇k2
⊥
B2

B · ∇Φ− p′

B2
(k⊥ ×B) · κΦ = 0 (1)

where k⊥ = ∇φ− q(ψ)∇θ − q′(θ − θk)∇ψ.

• Terpsichore-VVBAL solves a modified ballooning mode equation for eigen-
value λ:

B · ∇k2
⊥
B2

B · ∇Φ + (1− λ)
p′

B2
(k⊥ ×B) · κΦ = 0 (2)

where (1− λ) is an artificial multiplier to the pressure-gradient term and
λ > 0 for instability.

• Note that the eigenvalues are defined differently in two codes but the
marginal stability points are the same.

• γ = γ(s, θk, α) with s being flux label, θk being the radial wave number
and α being the field line variable.



Global Stability Codes: Terpsichore and CAS3D
PPPL

• The Terpsichore and CAS3D are 3D ideal MHD stability codes that de-
termine stability by minimizing the plasma potential energy:

δWp =
1
2

∫
d3x[δB⊥2 + (δB‖ −B

ξ · ∇p
B2

)2 + j‖ · ξ × δB− 2ξ · ∇p ξ · κ]

• Both codes use a finite element method for radial discretization and
Fourier decomposition in poloidal and toroidal angles.

• The Terpsichore treats vaccum as a pseudo-plasma. The CAS3D uses
Green’s function method to solve the vacuum problem and thus can eval-
uate stability without a conducting wall.

• The Terpsichore code is used in the optimizer for sake of speed.



Thermal Confinement
• In Stellopt, have several targets available:

* NEO calculations of effective-helical ripple  (εeff)
– DKES diffusion coefficient for a single particle energy
– RMS-sum of undesired B-harmonics
– “Pseudo-symmetry” – secondary magnetic wells
– J contour allignment

• For detailed analysis, use:
– Global scaling laws

• ISS95  from a diverse set of stellarators
• Equivalent-ITER97P,  for quasi-axisymmetric stellarators

– DKES calculations for full distribution function
– Monte-Carlo simulations of neoclassical transport
– Turbulence simulations almost available
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DKES Monoenergetic Transport for NCSX (li383)

DKES code (Hirshman) predictions confirmed by W7-AS (Maaßberg).
Monoenergetic diffusivities are strongly reduced by Er; and
   asymptotically approach the axisymmetric result.
With the ambipolar Er the neoclassical ripple transport is negligible.

Er/Bv= 0
1x10-4
3x10-4
1x10-3
3x10-3



Fast Ion Orbit Confinement
Is not the same as thermal confinement, due to very 
low collisionality, large orbit displacements.  Losses 
often due to stochastic orbits.

• Do not have fully adequate Stellopt target
– Thermal confinement targets
– J contour confinement & allignment
– restricted Monte-Carlo simulation  (v. expensive)

• For detailed analysis, use:
– Monte-Carlo simulations of neoclassical transport
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Flux-Surface Quality
• 3D Configurations typically have islands, 

stochastic regions

• So far, have not succeeded in developing 
useful target for Stellopt for targeting island

• Depend on removing resonant fields (and 
thus islands) as second optimization step
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Island Removal Method

• Calculate coupling between 
plasma boundary shape and 
island widths by perturbation, 
using PIES

• Invert coupling matrix to find 
(small) shape modification to 
remove islands 

(S. Hudson, D. Monticello, A. Reiman)



Coil Design Has Been Modified to Produce Good Surfaces 
• “Dynamic healing” algorithm modifies coils in each PIES iteration to 

suppress targeted islands. 
• Preserves engineering and physics constraints on coil curvature, minimum 

distance between coils, kink stability.   

Converged, free-
boundary PIES 
calculation with 
healed coils. 
Sum of effective 
island widths < 1%. 

PIES calculation 
with original 
coils. 
Continues to 
deteriorate as 
iteration 
proceeds. 

plasma boundary in VMEC 
calculation with unhealed coils. 

(Stable up to n=45.  Ballooning 
restabilized in startup scenario.)
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NCSX Design Experience

• Parameter space is very large.  Many local minima.
• Optimization process is an exploration.
• We went through several stages, exploring and 

developing tools
– Fixed boundary plasma
– Coil designs
– Optimized coil designs
→For NCSX, each stage took more than a year.  Generated 

many competing designs.  Requires enormous amounts of 
computer time.

• It is important to identify goals, then explore for them 
directly
– Best if the optimizer can directly target desired properties



MCZ 021003    23

Summary and Work to be Done

We have made enormous progress in developing a toolset for 
designing optimized stellarators.  We can simultaneously target 
goals that were not approachable ~5 years ago.

To develop an optimized Stellarator reactor, we need to target some 
new goals

– Alpha-particle confinement  
– COE – measure of reactor attractiveness 
– Flux surface quality (if possible)

We should expect to spend some time exploring the landscape
– Need to make sure we have adequate computer resources


