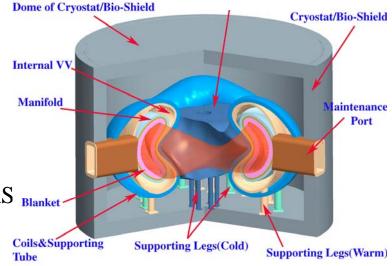
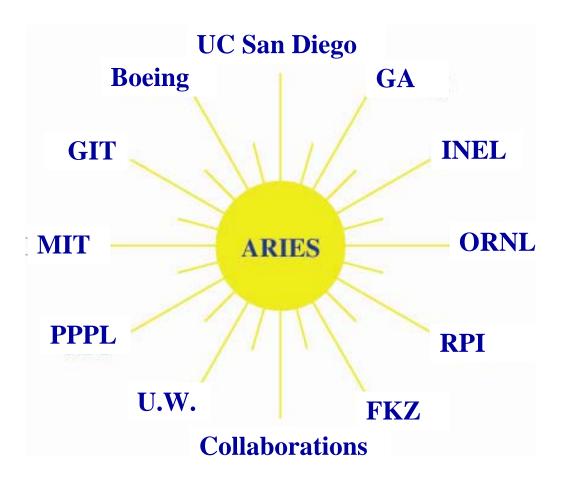
The ARIES Compact Stellarator Study: Introduction & Overview


Farrokh Najmabadi and the ARIES Team


UC San Diego

ARIES-CS Review Meeting October 5, 2006 PPPL, Princeton, NJ

Electronic copy: http://aries.ucsd.edu/najmabadi/TALKS Blanket

ARIES Web Site: http://aries.ucsd.edu/aries/

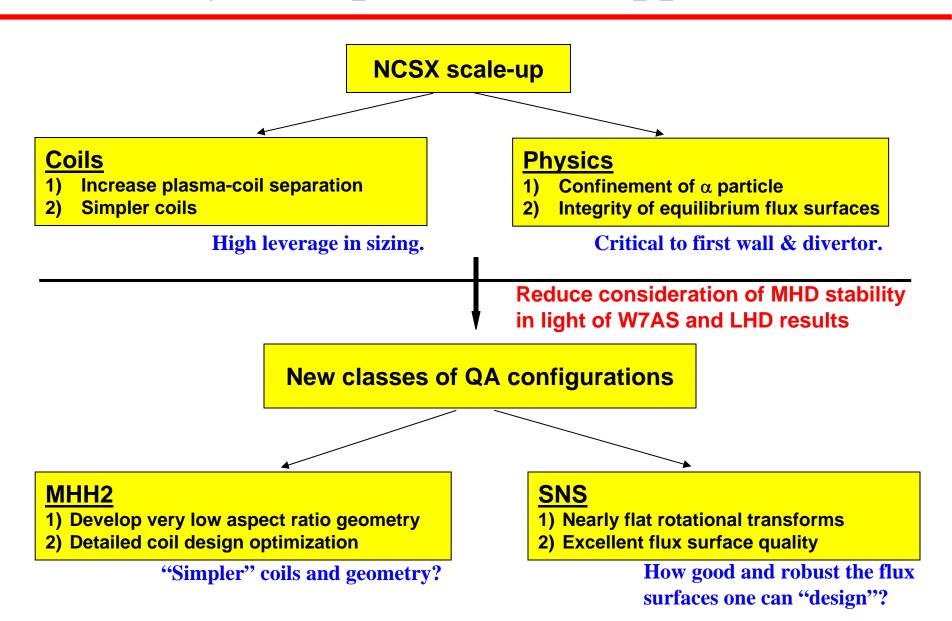
For ARIES Publications, see: http://aries.ucsd.edu/

Goals of the ARIES-CS Study

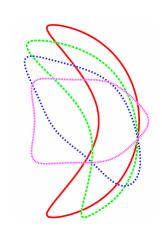
- ➤ Can compact stellarator power plants be similar in size to advanced tokamak power plants?
 - ✓ Reduce aspect ratio while maintaining "good" stellarator properties.
 - ✓ Include relevant power plants issues (α particle loss, Divertor, Practical coils).
 - ✓ Identify key areas for R&D (what areas make a big difference)
- Impact of complex shape and geometry
 - ✓ Configuration, assembly, and maintenance drives the design
 - ✓ Complexity-driven constraints (e.g., superconducting magnets)
 - ✓ Complex 3-D analysis (e.g., CAD/MCNP interface for 3-D neutronics)
 - ✓ Manufacturability (feasibility and Cost)
- First design of a compact stellarator power plant
 - ✓ Design is pushed in many areas to uncover difficulties

Goal: Stellarator Power Plants Similar in Size to Tokamak Power Plants

- Multipolar external field -> coils close to the plasma
- First wall/blanket/shield set a minimum plasma/coil distance (~2m)

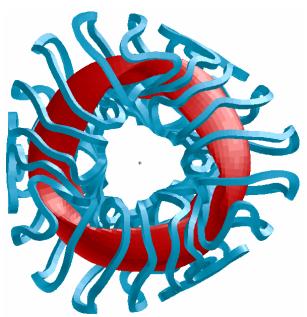


- > A minimum minor radius
- Large aspect ratio leads to large size.


- > Approach:
 - ✓ **Physics:** Reduce aspect ratio while maintaining "good" stellarator properties.
 - ✓ **Engineering:** Reduce the required minimum coil-plasma distance.

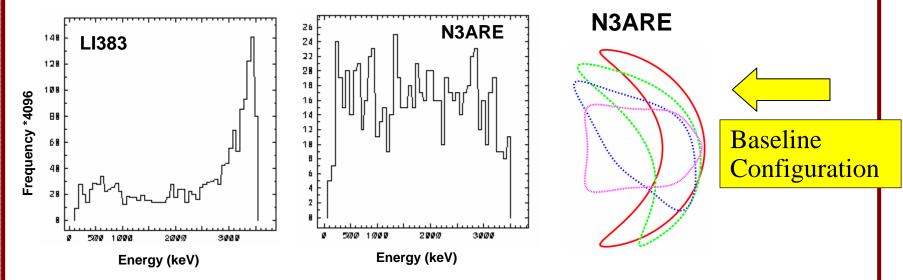
Physics Optimization Approach

Optimization of NCSX-Like Configurations: Increasing Plasma-Coil Separation


- ✓ A series of coil design with $A_c = \langle \mathbf{R} \rangle / \Delta_{\min}$ ranging 6.8 to 5.7 produced.
- ✓ Large increases in B_{max} only for $A_c < 6$.
- \checkmark α energy loss is large ~18%.

LI383

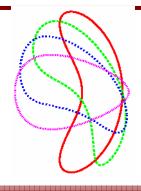
 $A_c = 5.9$ For < R > = 8.25m: $\Delta_{min}(c-p) = 1.4$ m

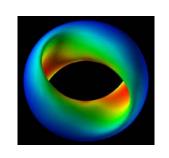

$$\Delta_{\min}(c-c)=0.83 \text{ m}$$
 $I_{\max}=16.4 \text{ MA } @6.5\text{T}$

Optimization of NCSX-Like Configurations: Improving α Confinement & Flux Surface Quality

A bias is introduced in the magnetic spectrum in favor of B(0,1) and B(1,1)

✓ A substantial reduction in α loss (to ~ 3.4%) is achieved.

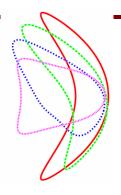


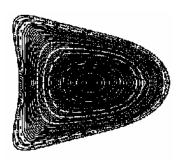

- ✓ The external kinks and infinite-n ballooning modes are marginally stable at 4% β with no nearby conducting wall.
- ✓ Rotational transform is similar to NCSX, so the same quality of equilibrium flux surface is expected.

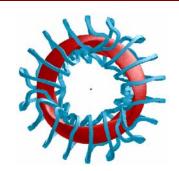
Two New Classes of QA Configurations


II. MHH2

- ✓ Low plasma aspect ratio ($A_p \sim 2.5$) in 2 field period.
- ✓ Excellent QA, low effective ripple (<0.8%), low α energy loss ($\leq 5\%$).

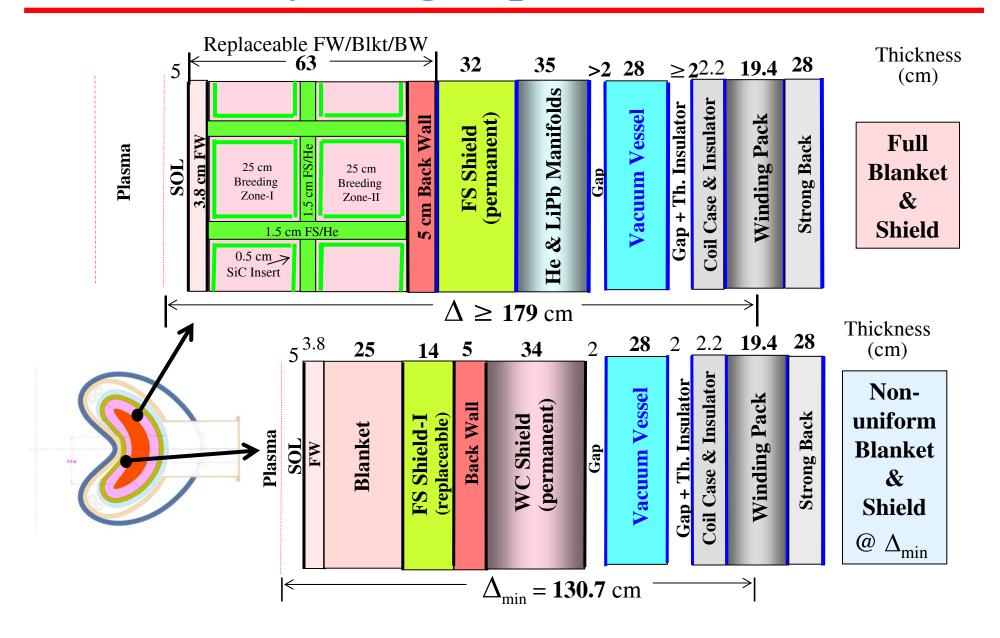


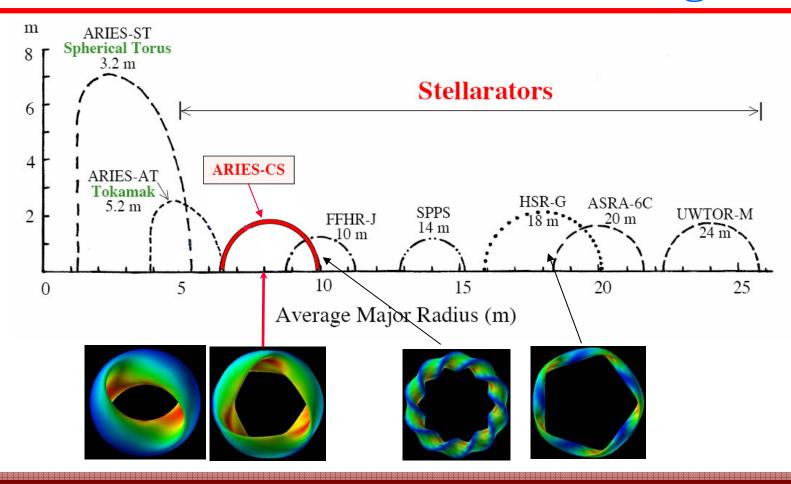





III. SNS

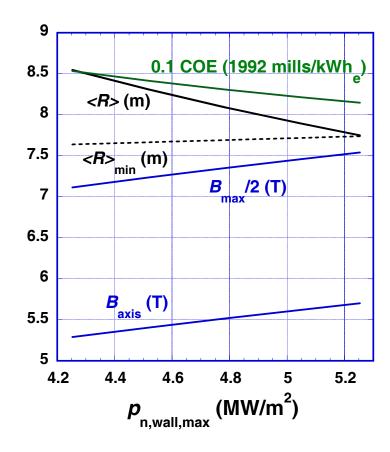
- $\checkmark A_p \sim 6.0 \text{ in 3 field period. Good QA, low } \epsilon\text{-eff } (<0.4\%), \alpha \text{ loss } \le 8\%$.
- ✓ Low shear rotational transform at high β , avoiding low order resonances.





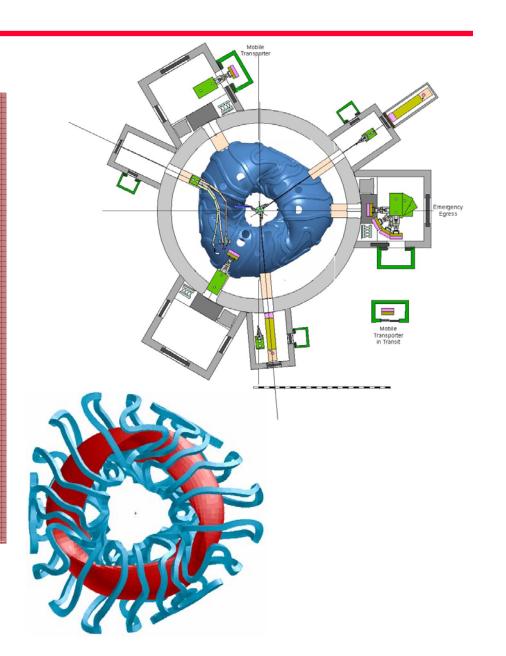
Minimum Coil-plasma Stand-off Can Be Reduced By Using Tapered-Blanket Zones

Resulting power plants have similar size as Advanced Tokamak designs



- > Trade-off between good stellarator properties (steady-state, no disruption, no feedback stabilization) and complexity of components.
- Complex interaction of Physics/Engineering constraints.

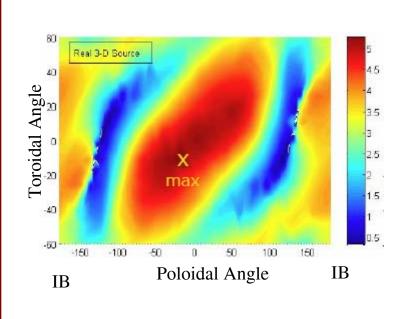
Resulting power plants have similar size as Advanced Tokamak designs

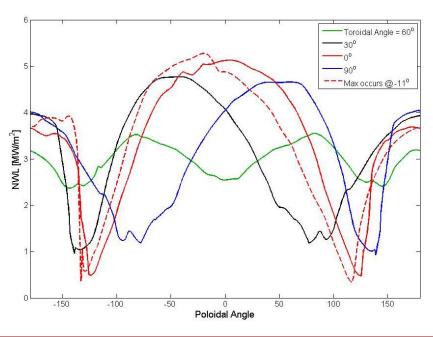

	SPPS	ARIES-CS	ARIES-AT	ARIES-RS
<r>, m</r>	14.0	7.75	5.2	5.5
< B ₀>, T	5.0	5.7	5.9	8.0
<β>	5.0%	5.0%	9.2%	5.0%
FPC Mass, tonnes	21,430	10,962	5,226	12,679
Reactor Plant Equip. (M\$)		1,642	900	1,386
Total Direct Cost (M\$)		2,633	1,757	2,189

Major radius can be increased to ease engineering difficulties with a small cost penalty.

Basic Parameters of ARIES-CS

Major radius	7.75 m
Minor radius	1.7 m
Aspect ratio	4.5
Average plasma density	$3.6 \times 10^{20} / \text{m}^3$
Average Temperature	5.7 keV
β	5.0 %
B_{o}	5.7 T
B_{max}	15.1 T
Fusion power	2.4 GW
Avg./max. wall load	2.6/5.3 MW/m ²
Alpha loss	5 %
TBR	1.1

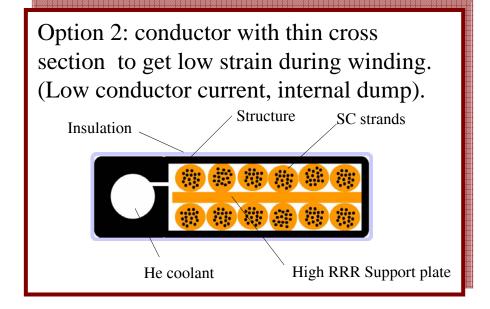



Complex plasma shape and plasma-coil relative position drives many engineering systems

First ever 3-D modeling of complex stellarator geometry for nuclear assessment using CAD/MCNP coupling

- > Detailed and complex 3-D analysis is required for the design
 - ✓ Example: Complex plasma shape leads to a large non-uniformity in the loads (e.g., peak to average neutron wall load of 2).

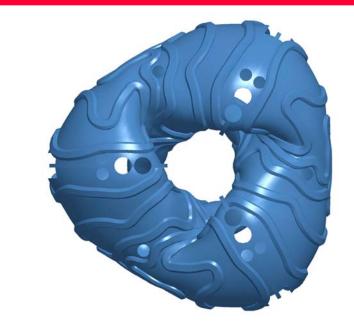
Distribution of Neutron wall load

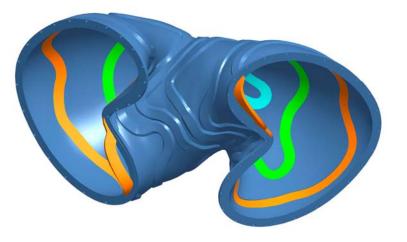


Coil Complexity Impacts the Choice of Superconducting Material

- > Strains required during winding process is too large.
 - ✓ NbTi-like (at 4K) \Rightarrow B < ~7-8 T
 - ✓ NbTi-like (at 2K) \Rightarrow B < 9 T, problem with temperature margin
 - ✓ Nb₃Sn \Rightarrow B < 16 T, Conventional technique does not work because of inorganic insulators

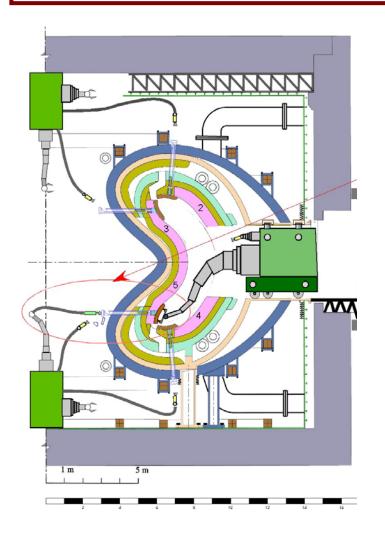
Option 1: Inorganic insulation, assembled with magnet prior to winding and capable to withstand the heat treatment process.





Option 3: HTS (YBCO), Superconductor directly deposited on structure.

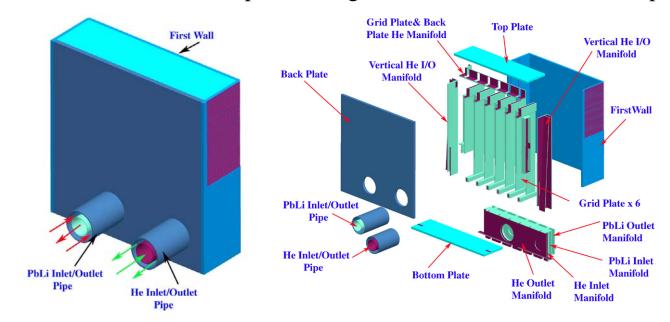
Coil Complexity Dictates Choice of Magnet Support Structure


- ➤ It appears that a continuous structure is best option for supporting magnetic forces.
- > Superconductor coils wound into grooves inside the structure.
- ➤ Net force balance between field periods.
- ➤ Absence of disruptions reduces demand on coil structure.



Port Assembly: Components are replaced Through Ports

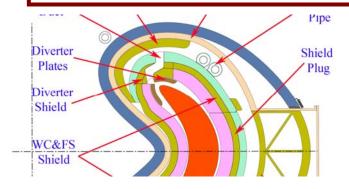
➤ Modules removed through three ports using an articulated boom.

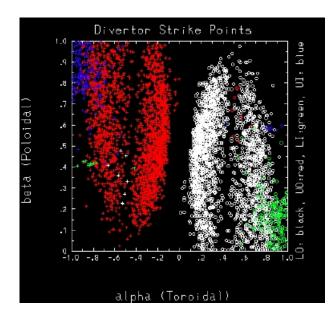


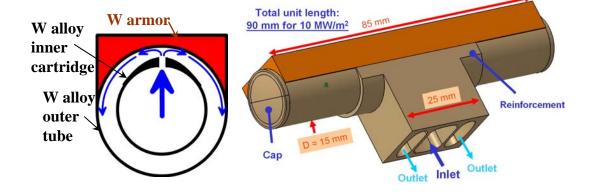
Drawbacks:

- ✓ Coolant manifolds increases plasma-coil distance.
- ✓ Very complex manifolds and joints
- ✓ Large number of connect/disconnects

Blanket Concepts are Optimized for Stellarator Geometry


- > Dual coolant with a self-cooled PbLi zone and He-cooled RAFS structure
 - ✓ Originally developed for ARIES-ST, further developed by EU (FZK), now is considered as ITER test module
 - ✓ SiC insulator lining PbLi channel for thermal and electrical insulation allows a LiPb outlet temperature higher than RAFS maximum temperature


- Self-cooled PbLi with SiC composite structure (a al ARIES-AT)
 - ✓ Higher-risk high-payoff option


A highly radiative core is needed for divertor operation

- ➤ Heat/particle flux on divertor was computed by following field lines outside LCMS.
 - ✓ Because of 3-D nature of magnetic topology, location & shaping of divertor plates require considerable iterative analysis.

Top and bottom plate location with toroidal coverage from -25° to 25°.

Divertor module is based on W Cap design (FZK) extended to mid-size (~ 10 cm) with a capability of 10 MW/m²

Summary of the ARIES-CS Study

Goal 1: Can compact stellarator power plants similar in size to advanced tokamak power plants?

- ➤ Reduce aspect ratio while maintaining "good" stellarator properties.
- \triangleright Include relevant power plants issues (α particle loss, divertor, practical coils).
- ➤ Identify key areas for R&D (what areas make a big difference)

Results:

- ✓ Compact stellarator power plants can be similar in size to advanced tokamaks (The best "size" parameter is the mass not the major radius).
- \checkmark α particle loss can be reduced substantially (how low is low enough?)
- \checkmark A large number of QA configurations, more desirable configurations are possible. In particular, mechanism for β limit is not known. Relaxing criteria for linear MHD stability may lead to configurations with a less complex geometry or coils.

Summary of the ARIES-CS Study

Goal 2: Understand the impact of complex shape and geometry

- A. Configuration, assembly, and maintenance drives the design
 - ✓ A high degree of integration is required
 - ✓ Component replacement through ports appears to be the only viable method.
 - ✓ Leads to modules that can be fitted through the port and supported by articulated booms.
 - ✓ Large coolant manifold (increase radial build), large number of connects and disconnects, complicated component design for assembly disassembly.
- B. Complexity-driven constraints (e.g., superconducting magnets)
 - ✓ Options were identified. Base case requires development of inorganic insulators.

Summary of the ARIES-CS Study

Goal 2: Understand the impact of complex shape and geometry

- C. Complex 3-D analysis
 - ✓ 3-D analysis is required for almost all cases (not performed in each case).
 - ✓ CAD/MCNP interface for 3-D neutronics, 3-D solid model for magnet support, ...
- D. Manufacturability (feasibility and Cost)
 - ✓ Feasibility of manufacturing of component has been included in the design as much as possible.
 - ✓ In a large number of cases, manufacturing is challanging and/or very expensive.

Exploration and Optimization of Compact Stellarators as Power Plants -- Motivations

Timeliness:

- ➤ Initiation of NCSX and QPS experiments in US; PE experiments in Japan (LHD) and Germany (W7X under construction).
- ➤ Progress in our theoretical understanding, new experimental results, and development of a host of sophisticated physics tools.

Benefits:

- Such a study will advance physics and technology of compact stellarator concept and addresses concept attractiveness issues that are best addressed in the context of power plant studies, *e.g.*,
 - \checkmark α particle loss
 - ✓ Divertor (location, particle and energy distribution and management)
 - ✓ Practical coil configurations.
- ➤ NCSX and QPS plasma/coil configurations are optimized for most flexibility for scientific investigations at PoP scale. Optimum plasma/coil configuration for a power plant (or even a PE experiment) will be different. Identification of such optimum configuration will help define key R&D for compact stellarator research program.