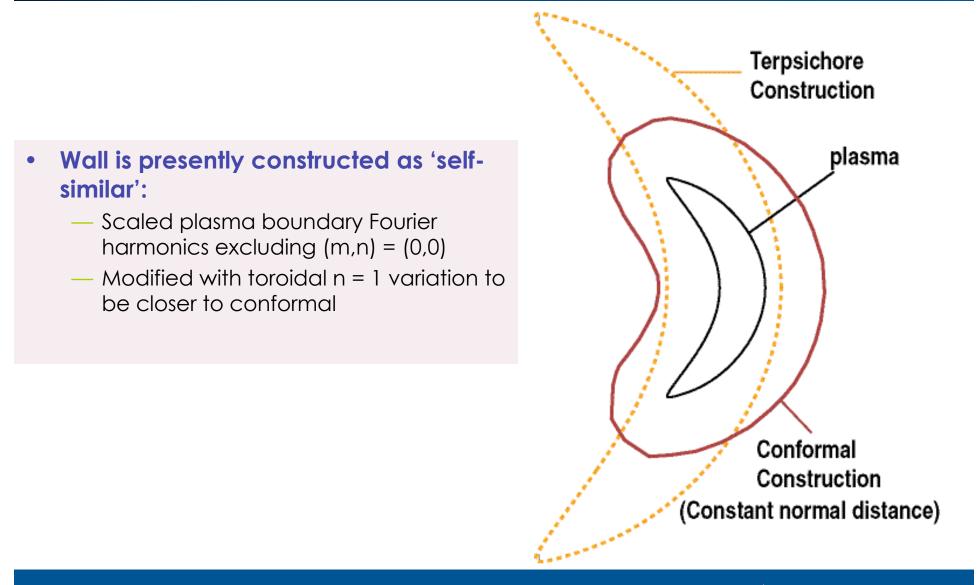
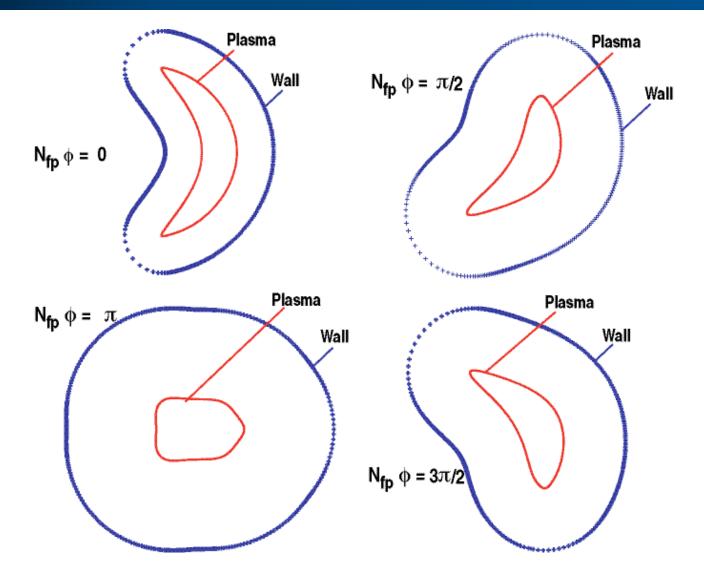
EXPECTED β **PERFORMANCE LIMITS IN ARIES-CS**


A.D. Turnbull With Acknowledgements to: **General Atomics** Lang Lao Tony Cooper **CRPP** Lausanne Long-Poe Ku PPPL **ARIES-CS** Project Meeting **October 4 2006 Princeton Plasma Physics Laboratory Princeton**, NJ

Stability for ARIES ARE Case is Likely Dependent on Profile Parameters As Well As Shape Parameters


PRESSURE ROTATIONAL TRANSFORM Lowest order rational $\mu = 0.5$ 6×10^{4} is well inside core: ι**⊭1/2** ι=2/3 2 Sole n=1 surface 0.6 où ь(Ф)4 * 4 q 02 ι 0.5 2×104 60 ÷ $\iota = 2/3$ surface near edge: • ω Sole n=2 surface $\mathbf{2.0}$ 0.4 0.6 0.8 0.2 0.6 0.8 0 1 0 0.4 1 (ignoring 4/2) - Near $\iota = 2/3$ surface PARALLEL CURRENT DENSITY POLOIDAL CURRENT DENSITY right near edge 0 <J·B> <B·∇ø> 6×10 5×10^{5} <J·∇θ> Amps/m 4×10⁴ Two n=3 surfaces present: 2×10⁴ 3/5 3/7 (ignoring 6/3) 10⁶ 0.4 0.6 0.8 0.4 0.6 0.8 0.2 0.2 0 0

Wall Construction Requires More Conformal Wall with Constant Normal Distance

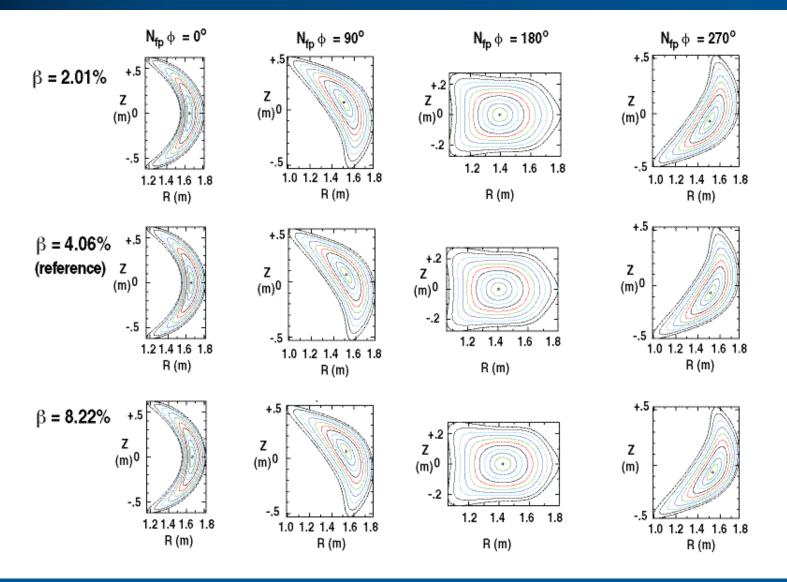
New Conformal Wall Construction with Constant Normal Distance Is Reasonable At All Toroidal Angles

Proposed Variation in Profile and Shape Parameters

• Vary ι profile by moderate amounts:

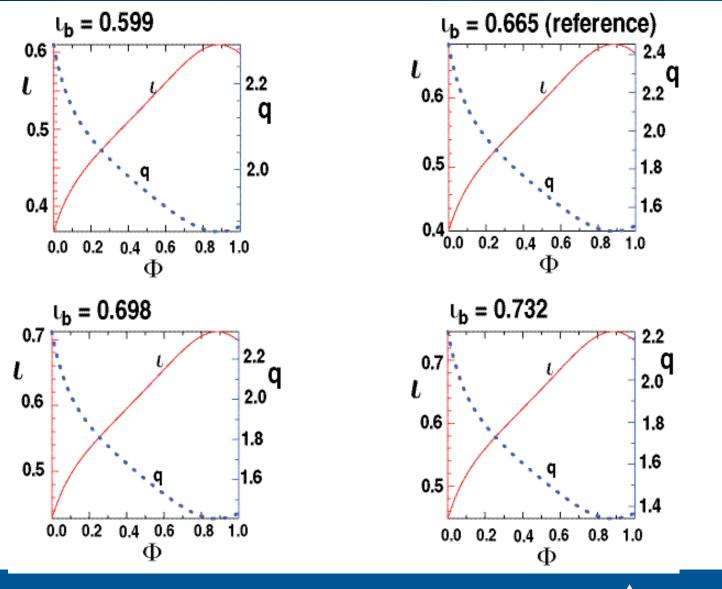
- -Add in and delete lowest order rational surfaces:
 - # $\iota = 2/3$ inside edge
 - # $\iota = 2/3$ at very edge
 - # Also $\iota = 3/4$
- -Vary pressure profile:
 - # Overall pressure peaking
 - # Sensitivity to steepened edge pressure gradient (H-mode)
 - # Sensitivity to flattened edge pressure gradient (ergodic edge)
 - # Sensitivity to steepened internal local pressure gradients (ITBs)

• Vary curvature around bean cross sections:


- -Determine sensitivity to divertor modifications:
 - # Sharpness of bean cross section
 - # Other proposed divertor positions

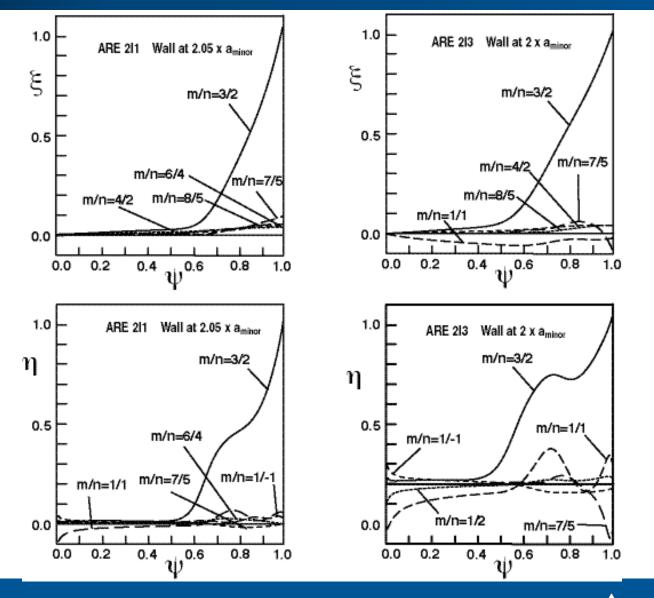
Completed First step:

Remaining steps to follow in next few weeks

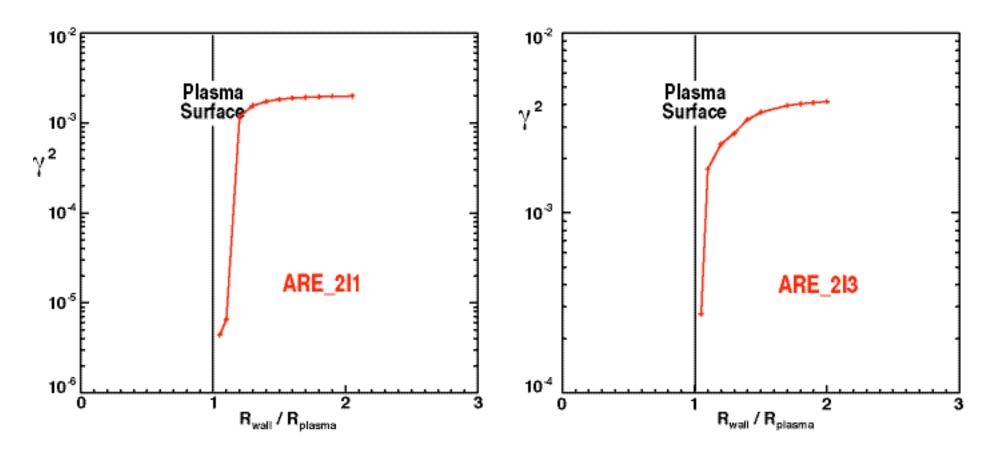


ARIES ARE Equilibria: β Sensitivity Scan At Constant ι Profile

💠 GENERAL ATOMICS


ARIES ARE Equilibria: ι Profile Sensitivity Scan At Constant β

Sensitivity Scan Stability Summary


- Terpsichore calculations with conformal wall at twice plasma radius:
 - 197 radial flux surfaces
 - Up to 101 toroidal-poloidal mode combinations
- Varying β at constant ι :
 - Reference case β = 4.06%: Marginal unstable ($\gamma^2 \sim 10^{-7}$)
 - # 9/6 (10/6 5/3) peaked at edge and
 - # 6/4 3/2 7/4 2/1 10/7 peaked at edge
 - Decreasing β = 3.24%, 2.01% at constant ι is weakly destabilizing
 - Increasing β = 4.88%, 6.13%, 8.22% at constant ι is stabilizing:
 - # Stable still at 8.22% for this ι profile
 - Interpreted as a weakly unstable current driven mode
 - Otherwise, robustly stable
- Varying ι profile at constant β :
 - $-\iota_{b}$ = 0.698: Unstable 3/2 7/5 6/4 8/5 4/2 peaked at edge ($\gamma^{2} \sim 10^{-3}$)
 - $-\iota_{b}$ = 0.599: Marginal unstable 13/5 14/5 12/5 11/5 peaked in core ($\gamma^{2} \sim 10^{-8}$)
 - $-\iota_{b}$ = 0.732: Unstable 3/2 7/5 1/1 4/2 8/5 peaked at edge ($\gamma^{2} \sim 10^{-3}$)

Predominantly 3/2 Modes Unstable When L = 2/3 Surface Enters Edge Plasma

GENERAL ATOMICS

Unstable 3/2 Modes Appear to Be Stabilized Only By Close Fitting Conformal Wall

Key is to keep 2/3 surface outside plasma

🔶 GENERAL ATOMICS

Status of Proposed Stability Analysis For January 2006 To December 2006: As of October 1 2006

MAJOR TASK	SUBTASK	STAT	US	COMMENTS
Investigate impact of variations from the baseline Scaled NCSX and MHH2 configurations on system performance	Apply the equilibrium and stability tools to evaluate sensitivity to minor variations in the geometry	Initia (Januai		Base NCSX and MHH2 configurations were evaluated previously
	Apply the equilibrium and stability tools to evaluate sensitivity to the ι and pressure profiles	In Progress (October 06)		Required tools are set up to perform more systematic studies
	Identify the key issues that affect the β limit	Proposed		Expectation from tokamak experience is that <i>i</i> and pressure will be key parameters
 Check sensitivity of NCSX 'ARE' case to: Edge rationals by modifying i profile Edge pressure by flattening profile at edge Boundary shape 			16	heck sensitivity of MHH2 coil case neck sensitivity of SNS

- Boundary shape

SENERAL ATOMICS

configuration