
3-1

Chapter 3 – Equilibrium, Flux Surface Integrity and Island Healing

This chapter discusses the NCSX equilibrium calculations, including the issue of flux
surface integrity. The VMEC equilibrium code has been used for the routine generation of three-
dimensional equilibria for stability and transport studies and has been incorporated in the
optimizer for generating candidate NCSX configurations and assessing coil-set flexibility. The
VMEC code is described in Section 3.1. Equilibrium calculations have used bootstrap-consistent
current profiles, and the calculation of the bootstrap current is discussed in Section 3.2.
Calculation of three-dimensional equilibria with islands and stochastic regions has been done
with the PIES code, which is described in Section 3.3. Section 3.4 discusses the evaluation of
flux surfaces for candidate configurations generated by the optimizer. Flux surfaces are
destroyed by resonant fields, and Section 3.5 describes how the resonant fields in PIES may be
calculated using quadratic-flux minimizing surfaces.

Once calculated, the resonant fields can be eliminated. Section 3.6 describes a method
that has been used to make small modifications to the fixed-boundary NCSX configuration to
remove residual magnetic islands. This procedure is adapted to free-boundary equilibria and
Section 3.7 describes a procedure based on the PIES code to modify the coil design to remove
resonant Fourier components generated by the discrete coils that cause flux surface breakup. This
procedure is called island healing, and the coil set thus obtained is called the (M45h) healed coil
set and is referred to throughout this document. Section 3.7 also includes results from multi-
filament (as opposed to single filament) healed coil set calculations used to model the finite
thickness of the coils, various vacuum configurations with the healed coils, and an equilibrium at
β=4.6% comparing the healed coils to the unhealed coils.

The calculations described in sections 3.3 – 3.7 do not include neoclassical effects, which
are expected to reduce island widths, and they do not include the effects of plasma flow, which
can shield rational surfaces from resonant magnetic field components and prevent the formation
of islands. The expected consequences of neoclassical effects are estimated in Section 3.8, and
the effects of plasma flow are discussed in Section 3.9.

3.1 VMEC

The VMEC code[1] solves the three-dimensional equilibrium equations using a
representation for the magnetic field that assumes nested flux surfaces. VMEC uses an inverse
moments method, in which the geometric coordinates R and Z are expanded in Fourier series in a
poloidal angle and toroidal angle (for non-axisymmetric configurations). The coefficients Rmn,
Zmn in this series expansion are functions of the normalized toroidal flux s, where s=0 is the
magnetic axis (which can be a helical curve in three dimensions) and s=1 is the plasma
boundary. Here, m is the poloidal and n is the toroidal Fourier mode number. The boundary
Fourier coefficients Rmn(s=1) and Zmn(s=1) can either be constant (corresponding to a "fixed-
boundary" equilibrium calculation), or they may be self-consistently computed from the MHD
force balance equation at the plasma-vacuum boundary (for a "free-boundary" calculation[2]).

Internally, VMEC computes an addition "renormalization" stream function, λ, which is
used to optimize, dynamically and at every radial surface, the convergence rate in Fourier space
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for the spectral sum Σ(Rmn
2 + Zmn

2). In the original VMEC, the radial mesh grid is staggered,
with the Rmn(s) and Zmn(s) coefficients defined on integral radial mesh points sj = (j-1)/(Ns-1),
where Ns is the number of radial surfaces, and the lambda coefficients on half-integer mesh
points interleaving the sj mesh. This scheme has been proven to lead to excellent radial
resolution as well as minimal mesh separation (at least for large aspect ratio plasmas and with
limited angular resolution meshes).

Significant improvements have been made to the VMEC code in the context of the NCSX
design effort. It has been re-differenced to improve the convergence both on finer angular and
radial meshes and for equilibria with a wide range of rotational transform profiles. In VMEC, the
inverse equations are cast as second order equations (in minor radius) for the Fourier components
of R, Z, and λ. As noted above, λ has been previously differenced radially on a mesh centered
between R, Z nodes, which greatly improved the radial resolution. This could be done to second
order accuracy (in hs = 1/[Ns-1]) since no radial derivatives of λ appear in its defining equation,
Js = 0 (here, Js is the contravariant radial component of the current). Near the magnetic axis,
however, a type of numerical interchange instability (mesh separation) has been observed as the
angular resolution is refined. This behaviour has prevented the temporal convergence of 3D
solutions with large numbers of poloidal (m) and toroidal (n) modes (typically, m ~ 6-8 was the
practical limitation). It has also produced convergence problems for equilibria with low
ι (<<1) where field lines must encircle the magnetic axis many times to define magnetic surfaces.
The new differencing scheme computes the stream function on the same mesh as R and Z
(although the output values of λ  continue to be on the centered-grid for backwards
compatibility), which leads to numerical stabilization of the origin interchange. To avoid first
order errors (in hs) near the plasma boundary resulting from the new representation of λ, the
radial current Js continues to be internally represented (in terms of λ) on the interlaced-grid. This
maintains the good radial spatial resolution associated with the original half-grid representation
for λ. As a result, computation of accurate, convergent solutions with substantially higher mode
numbers is now possible using VMEC (m  < 20). This corresponds to much finer spatial
resolution and significantly improved force balance in the final equilibrium state. It also allows
the calculation of equilibria with lower values of ι, which were difficult to obtain with the
previous differencing scheme.

An additional improvement in the output from VMEC includes a recalculation (once the
VMEC equilibrium has been obtained) of the magnetic force balance F ≡  JxB - ∇p = 0. The
radial (∇s) component of F is solved in terms of the non-vanishing contravariant components of
B (Bu and Bv) and the metric elements determined by VMEC, as a magnetic differential equation
for Bs. An angular collocation procedure (with grid points matched to the Nyquist spatial
frequency of the modes) is used to avoid aliasing arising from nonlinear mode coupling of the
Fourier harmonics of R and Z in the inverse representation of the equilibrium equation. The
accurate determination of Bs, together with the higher angular resolution afforded by the larger
limits on the allowable m,n spectra in VMEC, permits an accurate assessment for the parallel
current (which contains angular derivatives of Bs) as a function of poloidal mode number, to be
performed.
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3.2 Bootstrap Current Profile

The current profiles for the NCSX design have been determined by a bootstrap current
calculation using VMEC equilibria. Axisymmetric calculations using the bootstrap module in the
jsolver code [3-5] have been used for this purpose. For perfect quasi-axisymmetry, the bootstrap
current is identical to that in an equivalent tokamak, because the bootstrap current is determined
by the Fourier components of |B| in Boozer coordinates. In practice, the quasi-axisymmetry
condition is satisfied approximately, so to quantify the errors introduced by the residual non-
quasi-axisymmetric ripple, fully three-dimensional Monte-Carlo-δf bootstrap calculations have
been done for an earlier NCSX reference configuration, configuration C82, using the ORBIT
code [6, 7]. These calculations have verified that the bootstrap current is given to a good
approximation by the axisymmetric terms alone. The Monte-Carlo simulations for the non-
axisymmetric case have been further benchmarked against calculations with the DKES (Drift
Kinetic Equation Solver) code [8]. In calculating the bootstrap current with the JSOLVER code,
the density profile has been taken to be n(s) = n(0)(1-s2.3)0.1, where n(0) = 0.54 _1020 m-3. The
corresponding temperature profile for the full, 4% β, li383 case is T(s) = T(0)(1-s2.3)1.9, where
T(0) = 2.14 kev.

3.3 The PIES Code

Three-dimensional magnetic fields in general have magnetic islands and regions of
stochastic field lines. The VMEC code uses a representation of the magnetic field that assumes
nested flux surfaces, and thus cannot be used to examine magnetic islands. The PIES code is a
three-dimensional equilibrium code that uses a general representation for the field, and is used
for calculating islands and stochastic field line trajectories. There is an extensive set of
publications on the algorithm, implementation, validation, convergence properties and
applications of the PIES code. [9-13, 16-40]

The PIES code solves the MHD equilibrium equations using a Picard iteration scheme :

∇ x Bn+1 = J(Bn). (3-1)

The iterative steps involve solving the plasma current, J, given the magnetic field, B, and
pressure gradient ∇∇∇∇p :

∇∇∇∇p=J(n+1)xBn (3-2)
∇ · J = 0.  T∇∇∇∇ x B(n+1) (3-3)
with the constraint ∇ ·Bn+1 = 0, where Bn is the magnetic field at the start of the nth iteration. This
scheme is closely related to the Picard algorithm widely used to solve the axisymmetric Grad-
Shafranov equation in the form  ∆* ψn+1 = jφ( ψn). As with the Picard iteration scheme for the
Grad-Shafranov equation, under-relaxation is used to extend the domain of convergence of the
Picard iteration.

B(n+1)= α Bn+(1-α) B, (3-4)
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where 0 < α < 1.  An advantage of the Picard scheme is that it provides an accurate calculation of
resonant pressure driven currents, which are believed to play an important role in determining
island widths. At each iteration, the code solves for the current from the force balance equation.
Writing

⊥+= JBJ µ , J⊥ = B x ∇p / B2, (3-5)

gives,
B · ∇µ = −∇ · J⊥. (3-6)

Integration of this magnetic differential equation gives an accurate method for determining the
currents. This follows the work of Gardner and Blackwell [41], who demonstrated the
importance of using an accurate solution for the currents in stability studies, and it is now routine
in Mercier and global stability studies of stellarators to recalculate the current from three-
dimensional equilibrium solutions in this way. In implementing a numerical scheme for solving
the magnetic differential equation, explicit upper bounds on the associated numerical errors were
derived and are used to allow the specification of required tolerances in the code.[10]

As the PIES code iterates, the pressure and current are flattened in islands and stochastic
regions. Several numerical diagnostics in the code allow the determination of the location of
these regions. The PIES algorithm is described in detail in the references [9-13, 19].

The PIES code has been validated by testing of the individual components, by internal
checks in the code that monitor the accuracy with which the equilibrium equations are satisfied,
and by comparison with analytic solutions and with other codes. Analytic solutions against
which the code has been compared have included : Soloveev equilibria[11]; large aspect ratio
stellarator expansions[11]; helical force-free Bessel function equilibria with islands[19]; and the
analytic solutions of White et al for saturated tearing modes with narrow islands. Comparison of
PIES with other codes has included: comparison with axisymmetric j-solver[14]; equilibria for
TFTR and DIII-D; comparison with Biot-Savart vacuum field solvers; comparison with marginal
stability for tearing modes calculated by the linearized resistive time-dependent code of Hughes;
and comparison with VMEC[16]. Reference [16] contains a careful comparison between the
VMEC code and the PIES code solutions. The devices modeled were the ATF and TJ-II
stellarators, for rotational-transform profiles where low order rational surfaces were absent. The
flux surface shape, location of the magnetic axis and the value of iota as a function of flux
surface were monitored as a function of β and radial resolution. An extrapolation in radial
resolution was used to verify the quantitative agreement of the codes. The comparison with
VMEC was continued in reference [18]. Here, the rotational transform as a function of radius
was in excellent agreement between the two codes for the W7-X stellarator, at < β > = 5%.

Many stellarators, for example ATF, TJ-II, W7-AS, W7-X and LHD have been modeled
by the PIES code [11,16,18,20]. Present day experiments have not reached the predicted
equilibrium beta limit, and no experimental study of this issue has therefore been possible.

In the context of the NCSX design effort, several modifications have been made to the
PIES code that have increased its speed by about an order of magnitude, allowing routine
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application of the code to evaluate flux surfaces in candidate NCSX configurations. The speed of
the code was improved by modifications to use an improved method for PIES initialization with
a VMEC solution, converting to a spline representation of the magnetic field for field line
following, and to store matrix inverses. Compared with VMEC, the PIES code has a more time-
consuming algorithm, which is needed for a general representation for the magnetic field. Time
is saved by initializing PIES with a converged VMEC solution. For this purpose, the under-
relaxation scheme in PIES has been modified to provided an improved coupling to the VMEC
solution. This involves blending with the VMEC field in the first PIES iteration. The previous
under-relaxation scheme blended the current rather than the fields. The under-relaxation was
skipped in the first PIES iteration, allowing a large step from the VMEC field, but slowing the
ultimate convergence. The PIES code follows magnetic field lines as a preliminary step to
solving the magnetic differential equation determining the Pfirsch-Schlueter current. In each
iteration of the PIES code, a discretized Ampere's law is solved by the inversion of a block-
tridiagonal matrix. The elements of the blocks are determined by metric elements of a
``background coordinate system'' that does not change from one iteration to the next, allowing
time to be saved by storing the inverses of the blocks. For high resolution calculations, this
changes the scaling of the code's execution time from m3n3k to a much more favorable m2n2k
where m and n are the number of the poloidal and toroidal modes retained, and k is the number
of radial grid surfaces.

3.4 Flux Surface Integrity

Three-dimensional magnetic fields in general have magnetic islands and stochastic field
lines. The goal is to minimize the size of these regions in NCSX to obtain good flux surfaces
across at least 90% of the cross-section. As a first step, a fixed boundary reference configuration
with relatively good flux surfaces was identified, and this configuration is referred to as LI383.
The intrinsic flux surface properties of configuration LI383 relative to that of other
configurations are discussed in this section. Section 3.6 will discuss adjustments of the LI383
boundary to remove residual islands. Section 3.7 will discuss the design of coils that preserve
flux surfaces by suppressing magnetic islands – a procedure called coil healing.

The configuration optimizer used to generate candidate configurations for the NCSX
design study did not include a measure of flux surface integrity. Flux surface calculations for the
various candidate configurations have found significant differences in the extent of islands and
stochastic regions. The earlier reference configuration, C82, was found to have a large region of
stochastic field lines at beta values of interest. This was typical of several types of configurations
that were studied. In contrast, the flux surfaces of the NCSX reference design configuration
LI383 and similar configurations were nearly adequate even before the application of any flux
surface optimization.

In regions where dι/ds > 0, perturbed bootstrap current effects are predicted to lead to
substantially decreased magnetic island widths in configurations of the type studied here.[42]
This is the inverse of the neoclassical tearing mode that has been observed in tokamak
experiments. This neoclassical effect is presently being incorporated into PIES, but is not
included in the calculations reported here. The calculations are therefore conservative in that the
calculated island widths are likely to be larger than would be observed in an experiment operated
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in a collisionless regime. Section 3.8 gives an estimate of the neoclassical effect on the island
widths.

The PIES calculations discussed in this section are all fixed boundary, and used 143
Fourier modes, 0 ≤ m ≤ 11, -6 ≤ n ≤ 6, and 60 radial zones.

Figure 3-1. Poincare plot for configuration C82 at full current, ββββ = 0

Figure 3-1 shows a Poincare plot of a fixed-boundary PIES equilibrium for configuration
C82 at full current, β = 0. Magnetic islands occupy about 10% of the cross-section. The islands
are more readily visible if the Poincare plot uses a polar (ρ, θ) coordinate system, as in Figure 3-
2. Here, the coordinate ρ is taken to be constant on VMEC flux surfaces, and to measure the
distance of the VMEC flux surface from the magnetic axis along the θ = 0, φ = 0 line. The
angular coordinate θ is identical to the VMEC angular coordinate. When plotted in these
coordinates, the Poincare plot gives straight lines when the VMEC and PIES solutions coincide.
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Figure. 3-2.  Poincare plot for configuration C82 in VMEC coordinates, full current, ββββ = 0

When β is raised to 3%, the PIES calculations find that a substantial fraction of the flux
surfaces are lost (Figure 3-3). The equilibrium solution shown is not fully converged. The
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Figure 3-3.  Poincare plot for earlier configuration, C82, at full current, ββββ =  3%

outer surfaces continue to deteriorate as the calculation progresses, so that further computation is
of limited interest. From these plots we conclude that flux surface integrity is a problem for
configuration C82 in the absence of stabilizing neoclassical effects.
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Figure 3-4.  Poincare plot for configuration LI383 at full current, ββββ = 4.2%

Figure 3-4 shows the result of a PIES calculation for configuration LI383 as originally
generated by the optimizer at full current, β = 4.2%. The flux surfaces are greatly improved
relative to those of configuration C82. The total island width is about 15%, and is dominated by
a single island chain at ι =0.6 having poloidal and toroidal mode numbers m=5 and n=3.

The fact that the flux surface loss in the original configuration LI383 is dominated by a
single island chain suggests that the flux surfaces can be further improved by adjusting the
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amplitude of the corresponding resonant Fourier mode in the specification of the boundary
shape. This has been demonstrated, and is discussed in the following sections.

3.5 Resonant Fields, Islands and Quadratic-Flux Minimizing Surfaces

Magnetic islands are caused by resonant radial magnetic fields where the rotational
transform is a rational value. The continuous one-dimensional family of periodic orbits that form
a rational rotational transform flux surface in the absence of resonant fields will be reduced to a
finite set of periodic orbits by the resonant field, and an island chain will form. The periodic
orbits surviving perturbation will typically be the stable and unstable periodic orbits, which
correspond to the O and X points on Poincare plots of the magnetic field. In the small island
approximation, where the shear,  ι′, is assumed constant across the island, the width of the island
is given [44] as w ∝ (|Bnm|/ ι′m)1/2, where Bnm = (B  · ∇s / B  · ∇φ)nm is the resonant Fourier
component of the radial field at the  ι = n/m rational surface, s is the radial coordinate, and the
prime represents derivative with respect to s. The phase of the island chain is determined by the
sign of Bnm and the sign of the shear.

A method for calculating resonant fields at rational surfaces has been incorporated into
PIES. This method is based on the construction of quadratic-flux-minimizing surfaces. The
construction of these surfaces has been presented in [Hudson & Dewar, Physics of Plasmas
6(5):1532,1999.]. The surfaces are defined as extremizing surfaces of the square of the action
gradient functional which is defined

_  = _ ∫∫[_S/__]2   d_d_, (3-7)

where the action integral is

S=§A.dl, (3-8)

and A is the magnetic vector potential and dl is a line segment. For the purposes the present
discussion, quadratic –flux minimizing surfaces pass directly through the corresponding island
chains, and may be considered as rational flux surfaces of an underlying integrable magnetic
field.

The construction of the quadratic-flux-minimizing surfaces, in essence, provides an
optimal magnetic coordinate system, or equivalently an optimal nearby integrable magnetic field,
and in these coordinates resonant perturbation harmonics are easily identified. The method is
computationally efficient as the quadratic-flux-minimizing surfaces defining the coordinate
system may be constructed exactly and only where required -- at the rational rotational-transform
surfaces where islands develop. The amplitude of each selected resonant field harmonic is
calculated by Fourier decomposing the magnetic field normal to the quadratic-flux-minimizing
surface. Furthermore, and importantly, the Fourier decomposition is performed using an angle
coordinate that corresponds to a straight field line coordinate of the underlying integrable field
on that surface.
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The rotational-transform profile determines which islands will be present in a given
configuration, and islands associated with low-order rationals are typically the largest; however;
where the shear is small higher-order islands can easily overlap and result in chaotic field lines
and loss of confinement. For the case of LI383, the islands selected for suppression are typically
those corresponding to _=0.5,0.6, though higher order islands are also considered at times.
Generally the lowest order resonances present will produce the largest magnetic islands. A
convenient method of selecting the lowest order rationals is guided by the Farey Tree
construction [45].

3.6 Healing of Fixed-Boundary Flux Surfaces

In this section we consider manipulation of the width and phase of magnetic islands in
finite β stellarator equilibria as calculated by PIES by making small variations to the boundary
[Hudson, Monticello & Reiman, Physics of Plasmas, 8(7):3377 2001.]. Magnetic islands are
controlled by adjusting the resonant fields at the rational surfaces.

A set of islands that we wish to control is selected. In the case of LI383, clearly the
(n,m)=(3,5) island is dominant. The corresponding set of resonant fields that need to be
controlled is represented by

B = (Bn1,m1,Bn2,m2,...)
T. (3-9)

We expect that an (n,m) island width will be strongly affected by an (n,m) resonant deformation
of the plasma boundary in magnetic coordinates and perhaps through coupling to neighboring
modes, so a set of independent boundary variation parameters is constructed as follows. We
consider the minor radius

r = ∑rnm cos(mθ-nNφ) (3-10)

of the plasma boundary to be a Fourier series in the cylindrical toroidal angle and the poloidal
angle used in VMEC to construct the input R and Z harmonics. The conversion to cylindrical
space is given as R = r cosθ, Z = r sinθ. For a change r → r + δrnm cos( m θ- n N φ), the input
Fourier harmonics for the VMEC code change according to

Rm-1,n → Rm-1,n + δrnm/2, Rm+1,n → Rm+1,n + δrnm/2,
Zm-1,n → Rm-1,n -δrnm/2, Zm+1,n → Rm+1,n + δrnm/2. (3-11)

In principle we may change infinitely many boundary harmonics rnm, but a small set is chosen to
match the islands targeted and this becomes the vector of independent parameters

r = (rn1m1,rn2m2,...)
T. (3-12)

Now the problem is amenable to standard treatments where the functional dependence of
B on r is represented

B(r0+δr) = B(r0) + C · δr+ ... ,
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(3-13)

where r0 = 0 is the initial boundary shape and δr is a small boundary variation. The coupling
matrix C represents derivative information and will in general be an M _N matrix, where M is
the number of resonant fields, and N is the number of independent boundary variations. The jth
column of the coupling matrix is determined through a VMEC/PIES run by making a small
change δrnj,mj and taking the difference in the resonant fields from the original equilibrium,
divided by the change. Hence, N+1 VMEC/PIES runs are required to determine the coupling
matrix (each PIES run is initialized with a VMEC equilibrium).

The coupling matrix is inverted using the singular value representation [46], C = UwVT,
where U and V are ortho-normal and w is the diagonal matrix of singular values. If there are
more variables than equations more than one solution may exist and the nullspace is spanned by
the columns of U corresponding to zero singular values, of which there will be at least N-M.
Islands are removed if B = 0, so by choosing a correction to the boundary δr according to

δri+1 = - Vw-1 UT Bi,

(3-14)

where as in standard singular value decomposition techniques the zero, and if desired the small,
eigenvalues are ignored in the inversion of w, and Bi is the vector of resonant fields at the ith
iteration. In practice, several iterations will be required to achieve a desired accuracy.

This technique was applied to configuration LI383. A Poincare plot Figure 3-5 of the
PIES field after 32 iterations shows island chains and the ι = 3/5 island is significant. In this
figure and the next, the Poincare section is the φ = 0 plane and 50 field lines are followed starting
along the θ = 0 line. In addition, field lines at the X points of several low order island chains are
followed and the quadratic-flux minimizing surface and an estimated separatrix has been plotted
over one period of each island chain. The separatrix of the island chains has been calculated
using the resonant radial field and the shear at the rational surface of the VMEC equilibrium.
PIES has not yet converged for this case, but the information about the island width is still useful
for construction of the coupling matrix. To iterate each PIES run to convergence requires
excessive cpu time.
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Figure 3-5. Poincare plot of initial LI383 configuration after 32 PIES iterations

In this application of the island reducing technique, the (3,5),(6,10),(3,6) and (6,12)
resonances are targeted, and the (3,9),(3,8),(3,7),(3,6),(3,5) and (3,4) boundary harmonics are
varied. The (6,10) resonance produces an island at the same rational surface as the (3,5), namely
at  ι = 3/5, and may be considered as the second harmonic of the (3,5) resonance. If the (6,10)
resonant field is not targeted, this may cause an island of distinct topology from the (3,5). The
(3,6) and (3,12) resonances are included to ensure elimination of the (3,5) island does not cause a
(3,6) island to grow. The (3,7) resonance is also present in the configuration, but this has not
been included. For this set of resonant fields and independent boundary variation parameters, the
coupling matrix is shown.
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 δ3,9 
| |

 δB3,5   -0.15603, 0.94645, -0.73397, -1.13506, -0.17282 -0.30578  | δ3,8 |
| | | | | |
| δB6,10 | | 0.12627, 0.17790, 0.02146 0.19875, -0.07025, 0.01394 | | δ3,7 |

| |   =  | | | |
| δB3,6 | | -0.05487, -0.22773, -0.50056, 0.24140, -0.30079, 0.01531 | | δ3,6 |
| | | | | |
 δB6,12   -0.00874, 0.03067, -0.00351, 0.00827, -0.00327, -0.00083  | δ3,5 |

| |
 δ3,4 

On performing the Newton iterations, the following reduction in resonant fields is observed.

iteration |B3,5| |B6,10| |B3,6| |B6,12|

0 1.8 x 10-3 1.6 x 10-4 1.3 x 10-4 1.4 x 10-5

1 1.3 x 10-4 3.4 x 10-5 1.0 x 10-4 2.4 x 10-6

2 6.7 x 10-5 3.4 x 10-5 5.1 x 10-5 1.9 x 10-6

3 2.4 x 10-5 6.7 x 10-5 4.0 x 1-16 5.4 x 10-7

Table 3-1

The Newton iterations are terminated after four steps as this provides sufficient reduction
of the islands as seen in Figure 3-6. In a true Newton iteration procedure, the coupling matrix
would be re-calculated at every iteration. In this application such a procedure is too slow and the
coupling matrix is not changed; nevertheless, the convergence is satisfactory. The total change in
the boundary variation parameters is

δr = (-0.00184,-0.00026,0.00056,0.00300,0.00012,0.00064)T.

(3-15)

These variations are several millimeters in magnitude and generally have little impact on
stability and other physics. However, the case shown does destabilize the ballooning modes on
some surfaces. This would be expected to relax the pressure gradient slightly on those surfaces.
This is not surprising considering that the LI383 configuration has been optimized to provide
marginal ballooning stability at full pressure.
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Figure 3-6. Poincare plot of full-beta island-reduced LI383 configuration

The healed configuration has converged after 32 iterations, as has been confirmed by an
extended PIES run for hundreds of iterations. If the equilibrium has no islands, or if the width of
the islands is less than the radial grid used in PIES, then PIES and VMEC will agree and PIES
will rapidly converge.

3.7a Healing of Free-Boundary Flux Surfaces `Coil-healing_ : Algorithm.

The previous two sections have discussed the design of the fixed boundary configuration to
obtain good flux surfaces in equilibria where the shape of the boundary is specified. In the coil
design process, a discrete set of coils is produced which targets the desired boundary shape, and
the coils are further modified using the merged optimizer to allow for the simultaneous targeting
of engineering and physics objectives in the coil design. The result is a plasma that is stable to
ideal modes and a coil-design that is buildable; however, flux surface quality is not guaranteed
by this process, and islands reappear in the free-boundary equilbria.

This section discusses the modification of the coils to heal the flux surfaces while
preserving various engineering and physics measures, of the free-boundary equilbrium. The
method is based on the free-boundary version of the PIES code. Island suppression is achieved
by adding to the standard PIES algorithm a procedure that alters the coil geometry at each
iteration so that selected resonant components of the coil magnetic field cancel the resonant
components of the plasma magnetic field -- thus eliminating islands. The changes in coil
geometry are constrained to preserve both engineering constraints and ideal kink stability. As the
iterations continue, the coil geometry and the plasma simultaneously converge to an island-free
coil-plasma equilibrium.
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An early attempt [Hudson, Reiman, Strickler et al. to appear Plasma Physics and
Controlled Fusion. "Free-boundary full-pressure island healing in a stellarator : coil-healing.".]
at healing free-boundary PIES equilibria by variation of the coil-geometry calculated the
resonant fields after a fixed number, N, of PIES iterations, in which the coil geometry was
unchanged. The resonant fields were expressed as a function of coil geometry, and a method
essentially identical to the fixed boundary healing method was used to vary the coil geometry to
reduce the resonant fields after N iterations. This method had some success in healing coil sets,
however; the PIES calculations were typically not converged after the fixed number N iterations
and there was no guarantee that the configuration would remain healed (this is in contrast to the
fixed boundary healing method, where PIES was initialized by the VMEC equilibrium for each
trial boundary, which was not the case here). Experience from this work led to the method
presently used to heal free-boundary surfaces – termed dynamical-healing – which alters the coil
geometry at each PIES iteration and is now described.

The dynamical-healing procedure amounts to a free-boundary coil-physics optimizer that
preserves good flux surfaces, satisfies engineering constraints and includes measures of physics
stability. It is this procedure which leads to healed coil sets, and this procedure is also called coil-
healing or island healing.

The dynamic healing procedure is obtained by including in the basic PIES the module
COILOPT and STELLOPT which are used to alter the coil geometry and evaluate physics
measures. Solving the equilibrium equation and the adjustment of a coil design to eliminate
selected magnetic islands proceeds with initialization given

B = BP
n+ BC(ξ)n. (3-16)

The total magnetic field is the sum of the magnetic field produced by the plasma, BP, and the
magnetic field produced by the confining coils, BC, which is a function of a set of Fourier
harmonics, ξξξξ, which describe the coil geometry, at the nth iteration. The initial plasma state is
provided by the VMEC code, which imposes the artificial constraint that the plasma is consistent
with nested flux-surfaces. The constraint of nested flux-surfaces forces stellarator equilibria to
contain singular currents at the rational surfaces. The method presented in this section can be
considered as removing this constraint and allowing the VMEC initialization to relax into an
equilibrium, potentially with broken flux-surfaces (islands), while making adjustments to the coil
set to remove selected islands as they develop. The initial coil-geometry is provided by the
COILOPT code.

As described before, the standard PIES algorithm will calculate the plasma current from
the field, and then the plasma field from the current. The additional steps in the implementation
of the coil-healing are as follows.  The total magnetic field, B, after one PIES iteration is written

B=BP
(n+1)+BC(ξ)n. (3-17)

We may consider B as a small perturbation to a nearby integrable field and that magnetic islands
are caused by fields normal to, and resonant with, rational-rotational-transform flux-surfaces of
the nearby integrable field. A set of resonances that are to be suppressed is selected, for each
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resonance a quadratic-flux-minimizing surfaces is constructed, and the set of resonant fields thus
calculated is denoted {Bi : i=1,N}.

The COILOPT code provides a convenient Fourier representation of the coil geometry
and a set of coil harmonics {ξ j : j=1,M} appropriate for the resonances selected are
systematically varied to set Bi=0 using a Newton method.  The coupling matrix, ∇∇∇∇BCij

n, is
defined as the partial derivatives of the selected resonant harmonics of the coil magnetic field
normal to the quadratic-flux-minimizing surface (held constant during each PIES-healing
iteration) with respect to the chosen coil harmonics and is calculated using finite-differences. A
multi-dimensional Newton method is applied to find the coil changes δξj that set Bi=0.

Bi=∇∇∇∇BCij
n•δξj

n. (3-18)

This equation is solved for the δξj in a few iterations by inverting the N×M matrix ∇∇∇∇BCij
n using

singular-value decomposition and the new coil set is obtained

ξj
(n+1)=ξi

n+δξj
n, (3-19)

such that the resonant component of the combined plasma-coil field is eliminated. As the
iterations proceed, the coil geometry and the plasma simultaneously converge to coil geometry-
plasma solution with good-flux-surfaces.

The algorithm as presented is insufficient for practical purposes as no consideration has
been given to various engineering constraints. To be `build-able', the minimum coil-curvature
and coil-coil separation, for example, of the coils must exceed certain limits. Such constraints are
included in the COILOPT code and the initialization coil set, described by ξξξξ0, is satisfactory
from an engineering perspective. The healing algorithm is modified to preserve the minimum
curvature and coil-coil separation by adding to the set of resonant fields to be eliminated the
(appropriately weighted) differences in minimum curvature and coil-separation of the nth coil
set, described by ξξξξn, from the initial coil set. This constrains the island-eliminating coil variations
to lie in the nullspace of these measures of engineering acceptability.

In a similar manner, the algorithm is extended to preserve kink stability. The VMEC
initialization is stable with respect to kink modes. By calculating kink stability using the
TERPSICHORE and VMEC codes which are executed via the STELLOPT routine, the coil
changes are constrained to preserve kink stability.
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3.7b Application of Coil-Healing to M45 coils _Healed Coils M45h.

Considering now the M45 coil set and selecting the (n,m)=(3,6),(3,5) islands to be
suppressed, subject to the constraint that the minimum coil curvatures, the coil-coil separation
and the kink stability be preserved (9 constraints), and allowing some m=3,4,5,6,7,8 modular coil
harmonics to vary (36 independent variables), a healed coil-plasma state is achieved. The
engineering measures are preserved and the plasma is stable with respect to kink modes. The
plasma retains quasi-axis symmetry. Several hundred iterations are required to approach
convergence in both the plasma field and the coil geometry. To confirm that the coil set is healed
several hundred additional standard PIES iterations are performed with the coil set unchanged.
The coil set obtained is called the healed M45 coil set and is renamed M45h.

Figure 3-7. Poincare plots before (lower) and after (upper) free-boundary healing of flux surfaces from M45
coils.  ββββ = 4.1%.  The first wall boundary is shown as the solid line.

A Poincare plot of the final field is shown on an up-down symmetric toroidal cross-
section in the upper half Figure 3-7. In this, and the similar plots to follow, the boundary of the
first wall / plasma facing component is shown as a thick solid line. The island content in the
healed configuration is negligible, though there is some resonant m=18 deformation near the zero
shear location (indicating that additional near-resonant modes may need suppressing, or that the
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maximum _ needs to be constrained to avoid the resonance) and some high order (m=10,11,12,
and 14) island chains (which are considered sufficiently small). For comparison, a Poincare plot
of the unhealed configuration is shown after 180 standard PIES iterations in the lower half of the
figure. For the un-healed case there is a large m=5 island, the edge has become chaotic, and the
configuration deteriorates into large regions of chaos as the iterations continue.

A broad selection of coil harmonics was varied as the coil harmonics are not decomposed
in a magnetic angle and thus cannot be expected to couple directly with the resonant field
harmonics of the plasma. Also, by doing so there is extra freedom which is utilized by the
singular-value decomposition method to find a solution with minimal coil change. The coil
harmonics varied actually describe the toroidal variation of the modular coils on a topologically
toroidal winding surface. The winding surface itself is described using a Fourier representation,
but the winding surface is not altered in this procedure. The calculation shown used 63 radial
surfaces, 12 poloidal and 6 toroidal modes. Similar results have been obtained using up to 93
radial surfaces and 20 poloidal modes.

The maximum coil alteration is about 2cm, which comfortably exceeds manufacturing
tolerances, but is not so large that `healing’ significantly impacts other design concerns, such as
diagnostic access. A plot of the original coils and the healed coils is shown in VMEC toroidal
coordinates is shown below in Fig 3-8. From this figure we can see that the healed coils, from an
engineering perspective, are essentially the same as the original coils; in particular, the coil-coil
separation and minimum coil bend radius are the same for the M45h coils and the original M45
coils.
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Figure 3-8.  Original M45 coils and healed M45h coils in u-v space.

3.7.1 Finite Thickness Healed Coil Set

The analysis of coil sets thus far has used single filament coil representations. The single
filament model simply positions a filament at the geometrical center of each coil along the
winding path. As the difference between the healed and unhealed coils is about 2cm, it is
required to confirm that the finite thickness of the coils to be built will not adversely affect the
quality of the flux surfaces. A finite model coil configuration, based on the healed coil set, is
obtained as follows. The modular coils are modeled as rectangles in cross section, 0.12m in
height and 0.10m in width, with a 0.02m web at the center which separates each coil into two
halves. There are 8 by 2 turns for each coil half; and each turn is modeled as a filament. This coil
model resembles the proposed winding discussed in the Engineering Design Document.

We first note that the multi-filament coil model preserves the quasi-axisymmetry for the
healed coils, M45h. Using effective ripple as a measure of quasi-symmetry, the results of NEO
calculation based on VMEC equilibria show that the difference is less than 1.5% between single-
and multi-filament models throughout the entire plasma volume. The effective ripple is 0.21% at
r/a=0.5 for the single filament model, whereas it is 0.213% for the multi-filament model.
Similarly, at r/a=0.9 it is 1.026% for the single-filament versus 1.029% for the multi-filament
model. Also, the stability properties of the multi filament coils are similar to the single filament
coils and that the multi filament coils are stable with respect to kink and ballooning modes.
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PIES calculations indicate that the flux surfaces are similar in quality for both single- and
multi-filament models of the healed coils (M45h) at the reference operating state. The finite
build of the coils does not introduce extraneous resonant perturbations that destroy the properties
of the healed coils, which are designed using the single filament model. Using the multi-filament
coil set constructed, a PIES run is performed and the converged equilibrium is shown below Fig
3-9. The flux surface quality of the equilibrium actually appears better than the single filament
coil case! The area of greatest improvement is the absence of the resonant m=18 deformation
near the zero shear region.

Figure 3-9. PIES equilibrium using the multi-filament healed coils (M45h) at ββββ=4.1% The first wall boundary
is shown as the solid line. This figure compares favorably to single filament equilibrium in Fig 3-7.

The improvement in flux surface quality in going from single filament to multi filament
coil representations suggests that the remaining Poincare plots, which are all single filament
calculations, may be conservative and that the finite coil build may improve flux surface quality
for these configurations.

3.7.2 Vacuum Configurations with the Healed Coils.

The coil healing procedure considered only the full-pressure and full-current
configuration; nevertheless, the healed coils produce plasma states at different pressure and
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current with good flux surfaces over most of the plasma volume. Evidence of this will be shown
in Chapter 9, where a simulated start-up sequence of equilibria at different operating times is
presented. This section will present an analysis of a variety of vacuum states.

Figure 3-10. Rotational transform profiles for vacuum cases to be shown Fig 3-11 thru 3-15.

Various vacuum configurations are shown that confirm that good-flux surfaces may be
obtained with the healed coils (M45h) for a number of cases. The Poincare plots shown in
Figures 3-11 thru 3-15 show vacuum cases with different rotational transform profiles, varying
from  (i) 0.43 to 0.46; (ii) 0.52 to 0.53; (iii) 0.52 to 0.54; (iv) 0.54 to 0.56; and (v) 0.54 to 058.
These profiles are shown in Fig 3-10. The adjustment of the rotational transform in the vacuum
is achieved by variation of the coil currents. These plots all show good flux surfaces, to varying
degrees, and indicate that a variety of starting points may be used to generate plasma evolution
sequences which will ultimately reach the healed, operating configuration. In all of these plots
the location of the first wall is shown as the thick solid line.
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Figure 3-11. Vacuum configuration, ιιιι=0.43-0.46, with healed coils (M45h). The first wall boundary is shown
as the solid line.
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Figure 3-12. Vacuum configuration,  ιιιι=0.52-0.53, with healed coils (M45h). The first wall boundary is shown
as the solid line.
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Figure 3-13. Vacuum configuration, ιιιι=0.52-0.54, with healed coils (M45h). The first wall boundary is shown
as the solid line.
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Figure 3-14. Vacuum configuration, ιιιι=0.54-0.56, with healed coils (M45h). The first wall boundary is shown
as the solid line.
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Figure 3-15. Vacuum configuration, ιιιι=0.54-0.56, with healed coils (M45h). The first wall boundary is shown
as the solid line.

3.7.3 Comparison of Healed Coils and Unhealed Coils at an Alternative Configuration.

The coils have been modified to heal the islands in the reference configuration.  We find
that, having reduced the amplitude of the resonant magnetic field components produced by the
coils in this configuration, the flux surfaces are improved in other configurations as well.  This is
illustrated by the figure below, which shows the results of PIES calculations using the healed and
unhealed coils for a configuration that arises in a startup scenario.  The startup scenario is
described in Chapter 9.  The PIES calculations have been done for a time slice at 303 ms, with a
β of 4.6%, and the configuration is stable to ballooning and kink modes.  The upper half of the
Poincare plot is for the healed coils, and the bottom half for the unhealed coils. There does exist
an island in for the healed coils, but the flux surface quality of the healed coils for this
configuration is far better than that of the unhealed coils. The PIES run for the unhealed coils is
not converged, and continues to deteriorate as the calculation proceeds.

This plot shows that the healed coils (M45h) show improved flux surface quality in
configurations other than the configuration for which the healing was performed. Note that this
has been the general experience of coil healing, and was observed in healing of an earlier
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candidate coil configuration, named 0907, presented at the Physics Validation Review (PVR) of
NCSX.

The improvement of flux surface quality in going from a single filament coil model to a
multi-filament model, and the fact the healed coils display better flux surface quality than the
unhealed coils in a variety of configurations, is an encouraging observation of the healed coils.

Figure 3-16. Startup evolution sequence time 303ms at =4.6% (see Chapter 9). The upper half is with the
healed coils (M45h) and the lower half is with the unhealed coils (M45). The healed coils show significant

improvement. The first wall boundary is shown as the solid line.

3.8 Neoclassical Healing of Magnetic Islands

3.8.1 Introduction

The purpose of this section is to estimate the effect of the neoclassical bootstrap current
in reducing the width of magnetic islands produced by non-symmetric external field components
in a “reversed shear” quasi-axisymmetric stellarator such as NCSX.   It has been recognized for
some time [47] that the bootstrap current, which can destabilize "neoclassical tearing modes" in
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tokamaks, is stabilizing in a quasi-axisymmetric stellarator with outwardly increasing transform,
i.e., positive dι/dr.  There is experimental evidence for the neoclassical stabilizing effect from the
LHD stellarator.[47a,47b]  The magnitude of this effect depends on plasma collisionality, both
through the dependence of the bootstrap current on the parameter ν*e and through the role of
finite parallel thermal conduction in limiting temperature flattening across the island.

In the present analysis, we employ the formalism of tokamak theory: the only stellarator-
specific effect is an externally-imposed chain of magnetic islands with mode numbers
corresponding to the dominant non-symmetric field "perturbation" in the NCSX configuration.
For simplicity, we neglect two other effects, namely resonant Pfirsch-Schlueter currents and
stabilizing resistive-interchange contributions, which are expected to be less important than the
bootstrap current effect in the cases considered here.

3.8.2 Bootstrap Current Effect on Magnetic Islands

For cylindical tokamak geometry, including the bootstrap current density jbs, the island
width w in the weakly nonlinear regime [48,49,50] grows according to

(µ0 /1.2η) dw/dt   =   ∆´  +  6.4 (µ0Lq /Bθ) jbs /w (3-20)

where ∆´ is the usual tearing-mode stability quantity and Lq =  q/q´.   The numerical coeffficient
6.4 arises from calculating the applicable Fourier component of the current perturbation caused
by zeroing the bootstrap current inside the magnetic island, i.e., within the area bounded by the
island separatrix [51].  Writing

jbs    =    -  Cbs (ε0.5/Bθ) dpe/dr (3-21)

where ε = r/R and Cbs is a numerical coefficient of order unity which describes the dependences
of the bootstrap current on the density and temperature profiles and on the collisionality
parameter ν*e, we obtain

(µ0 /1.2η) dw/dt   =   ∆´  +  3.2 Cbs ε0.5 βθe (Lq /Lpe) /w (3-22)

where Lpe = - pe/pe´.   For the tokamak (q´ > 0), the bootstrap current term is positive and can
overcome a negative ∆´ to produce unstable neoclassical tearing modes. Comparisons with
experimental data from tokamaks have generally suggested a numerical coefficient somewhat
smaller than 3.2 in this equation;  for example, analysis of neoclassical tearing modes in TFTR
gave a coefficient of 2.6 [52].   For present purposes, however, we will retain the somewhat
larger theoretical coefficient.

The case of an island produced by the vacuum magnetic fields in a quasi-axisymmetric
stellarator may be considered analogous to the case of a tokamak in which an island is produced
by superimposing an external helical magnetic perturbation that is resonant on a magnetic
surface within the plasma.   If such a perturbation were imposed dynamically, then the plasma
would respond initially (i.e., within ideal-MHD theory) by forming a helical sheet current on the
resonant surface.   This sheet current would then decay resistively, producing a magnetic island;
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when the width of this island exceeds the very narrow resisitive layer of linear tearing-mode
theory, it will be described by an appropriate generalization of the slow-growing tearing-mode
theory.  In the present context, we are interested in the case where the resonant helical
perturbation has mode numbers m and n for which the tearing mode would be stable, i.e., for
which ∆´ is negative.  (Accordingly, we henceforth write ∆´ = - I∆´I.)

It is straightforward to extend the theory of weakly nonlinear tearing modes [47] to
include an externally driven island.   Rather than introducing the external perturbation explicitly,
it is more convenient simply to describe it in terms of the island width wext that would be
produced after resistive relaxation of the currents on the scale-length of the island but without the
bootstrap current effects.   Adding the bootstrap current term as before, the island is found to
evolve according to

(µ0 /1.2η) dw/dt   =  - I∆´I (1 - wext
2/w2)  -  3.2 Cbs ε0.5 βθe (Lι /Lpe) /w. (3-23)

Here we have also written Lq = - Lι  =  - ι´/ι,  in order to use the quantity ι = 1/q that is more
appropriate to a stellarator and to indicate that in this case the bootstrap term is stabilizing.  For a
high-m mode, to a very good approximation, we may use

∆´   =   - 2m / r . (3-24)

The "skin time" for resistive relaxation of w toward wext without bootstrap effects may now be
estimated, namely  τs = (µ0 /1.2η) (2wext r/m).

The bootstrap current term is seen to be inversely proportional to the island width w.
This arises from the implicit assumption that density and temperature gradients are completely
flattened across the magnetic island, thereby zeroing the bootstrap current within the island.
Since electron thermal conduction is by far the fastest process of equilibration along field lines in
high-temperature plasmas, bootstrap-current drive (or healing) of magnetic islands arises most
effectively from the flattening of the electron temperature gradient, with flattening of the density
gradient being less effective.    Since in most practical cases (including the cases considered
here) the electron temperature gradient provides the dominant contribution to the bootstrap
current anyway, because the density profile is relatively flat, it is not unreasonable to employ the
full bootstrap current in calculations such as these, but it should be recognized that this may give
an over-estimate of the bootstrap-current effect on magnetic islands in some cases.

For very narrow islands, however, the path length along the helical field lines becomes
very long, and finite (as distinct from effectively infinite) electron thermal conduction along the
field lines will prevent the electron temperature from flattening fully across the island, thereby
reducing even the most effective process of bootstrap-current island drive or healing.   This
effect is introduced into the theory [51] by modifying the bootstrap current term as follows:

1 / w    ⇒    w / (w2 + w0
2 ) (3-25)

where we have defined a "critical island width" w0, namely
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w0    =    5.1 (χ⊥ / χ// )
0.25 ( RLι / mι )0.5. (3-26)

Here, χ⊥ and χ// are the perpendicular and parallel thermal diffusivities, which control the degree
to which the temperature is flattened across the island.

Setting  dw/dt = 0, we then find the following relation to describe the actual island width
w in terms of wext  with bootstrap current effects included:

wext
2 /w2    =    1  +  2wbs w /(w2 + w0

2 ), (3-27)

where we have introduced an island width characterizing the bootstrap current effect, namely

wbs    =    1.6 Cbs ε0.5 βθe (Lι /Lpe) / I∆´I. (3-28)

3.8.3 Assumed NCSX Parameters and Profiles

We have assumed the following parameters for the reference NCSX high-beta plasma:

R  =  1.4  m
a   =  0.32  m  (average)
〈β〉  =  4.2 %
B0  =  1.2 T
〈ne〉  =  5.8 x 1019  m-3 . (3-29)

We have used density and temperature profiles that correspond very closely to those
resulting from transport calculations for NCSX [53], namely:

ne(r)  =  7.8 (1 - r2 / a2)0.35          (1019 m-3)

Te(r)  =  2.8 (1 - r2 / a2)1.35         (keV)

Ti(r)  =  1.9 (1 - r2 / a2)0.75         (keV). (3-30)

The use of profiles that are parabolas raised to exponents αn and αΤ facilitates the calculation of
the bootstrap current from the relevant theory.    We have used an iota profile for the reference
configuration for which the iota = 0.6 surface falls at r/a = 0.8 (see Section 3.1).  The only other
quantity needed from the iota profile is the local shear length, which for this profile is given by
Lι /a  =  0.7.   It should be noted that the shear length Lι may be longer for iota profiles that
flatten or decrease toward the plasma edge.

3.8.4 Bootstrap Current Magnitude

To evaluate the bootstrap current term, i.e., the characteristic island width wbs, it is
essential to have a good estimate for the constant Cbs, since this can vary appreciably depending
on profiles and on plasma collisionality.   For present purposes, we have assumed the profiles
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given above and have employed the Hinton-Rosenbluth neoclassical theory for the
"banana/plateau transition" [54], taking Zeff = 1.5.  We have allowed for Ti  ≠ Te  and have
included both the ∇Te and ∇Ti  contributions to the bootstrap current.   We obtain collisionality
parameters (at the resonant surface r/a = 0.8) given by ν*e = 0.49 and ν*i = 0.27.   For the profiles
assumed and for these collisionality parameters, we than obtain  Cbs  =  1.37, which gives

wbs / a   =  0.28 . (3-31)

In practical units, the value of Cbs found here corresponds to a bootstrap current density at
the resonant surface r/a = 0.8 given by  jbs  =  60 A/cm2.   This value is close to the peak of the
bootstrap current density profile in this case, because of the strong local pressure gradient and
modest collisionality in the region of the resonant surface.  This value agrees reasonably well
with other calculations of the bootstrap current density in the NCSX reference configuration (see
Section 3.2).

For the case considered here, the major contribution to the bootstrap current arises from
the electron temperature gradient.   This is partly because the density gradient is relatively small
and partly because the coefficient in the transport matrix that multiplies the electron temperature
gradient falls off less strongly with collisionality than does the coefficient multiplying the
density gradient.  The ion temperature gradient is found to make only a small contribution to the
bootstrap current.

3.8.5 Critical Island Width w0

To evaluate the critical island width, w0, we need estimates for the perpendicular and
parallel electron thermal diffusivities.  We obtain an estimate for χ⊥ from its relation to the
energy confinement time τE .   Using τE ≈ a2 / 4χ⊥ together with the empirically projected energy
confinement time in NCSX of 25 msec, we obtain an estimate χ⊥ ≈1.0  m2/s.

Obtaining a good estimate for χ// is trickier.  We start by calculating the Spitzer parallel
electron thermal diffusivity at the resonant surface;  this gives χ//

Sp  ≈  2.9 x 109  m2/s.   If we use
this value in the expression for wo, we would obtain  w0 / a   ≈   0.02.  However, at low
collisionality, the electron mean-free-path typically exceeds the parallel wavelength along the
helical perturbations.   In such cases, the use of Spitzer thermal diffusivity may lead to
unphysically large parallel heat fluxes, and thermal diffusion must effectively be replaced by
thermal convection, according to the relationship  χ// ∇//

2 Te  ⇒  vthe ∇// Te , where vthe is the
electron thermal velocity.   The quantity ∇// is the inverse parallel wavelength along the helical
perturbation, which depends on the island width w and can be estimated as ∇//  ≈  (mw/R) dι/dr
=  mιw/RLι .   Since χ// appears only to the one-quarter power, it is not necessary to retain this
explicit dependence on the island width w and so, for present purposes, we simply estimate it as
w/a ≈ 0.05.   For the "effective" thermal diffusivity in this convection-limited regime, we obtain
χ//

eff  ≈  7.2 x 107  m2/s.  If we use this value in the expression for w0, we would obtain w0 / a   ≈
0.05  (validating our estimate used to obtain χ//

eff ).

Without more theoretical work, it is not obvious which value to use for w0.  Almost
certainly, the Spitzer thermal diffusivity will overestimate parallel heat transport at low
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collisionality.  On the other hand, fast electrons may still be able to equilibrate the temperature at
a rate faster than that given by convection at the thermal speed.  Accordingly, it might be
appropriate to take a range w0 /a = 0.03 - 0.04.   In the calculation of the bootstrap island effect
given below, we have simply chosen an intermediate value, namely:

w0 /a  ≈  0.035. (3-32)

It has been pointed out [55] that islands of width less than w0  would not be expected to
have a seriously deleterious effect on confinement because transport from one side of the island
to the other along the direct path is already larger than transport along the path that follows the
helical field lines.  For the high-β NCSX reference case, this effect would apply only to islands
with widths less than about 1 cm.  However, the effect (unlike the bootstrap current) does not
depend on the plasma beta-value and it increases strongly with higher collisionality, so it should
apply particularly to low-temperature pre-heated plasmas.  The Spitzer parallel thermal
diffusivity scales as Te

2.5, so a reduction in the temperature at the resonance surface to 100 eV
(from 700 eV in the high-β plasma) would result in an increase in w0 /a to about 0.08.   (Since
parallel thermal convection scales much more weakly with  electron temperature than thermal
diffusivity, we find that the Spitzer diffusivity would be the operative process in this case.)   This
result suggests that in low-temperature ohmic plasmas in NCSX, islands at the iota = 0.6 surface
as large as about 2.5 cm may not have a seriously detrimental effect on confinement.

3.8.6 Results for NCSX Reference Case

The actual island widths w for a range of possible "externally-produced" island widths
wext  are given in Table 3-2.   For this calculation, we have taken wbs/a  = 0.28 and a  value w0 /a
= 0.035 (see the preceeding discussions).   For external islands with widths in the range 2 - 6 cm
(i.e., 6 - 18 % of the minor radius), the bootstrap current reduces the island width by almost a
factor-of-three.

wext  (cm) w  (cm)

1.0 0.41
2.0 0.70
3.0 1.00
4.0 1.34
5.0 1.73
6.0 2.19

Table 3-2.   Neoclassical bootstrap-healed island widths w for various externally-generated island widths wext

at the iota = 0.6 surface in the reference NCSX high-ββββ configuration

3.8.7 Conclusions Concerning Neoclassical Healing

The depletion of bootstrap current within the island causes a substantial reduction in the
width of the magnetic island caused by the dominant non-symmetric field "perturbation" in
NCSX.   Specifically, for the 4%-beta reference NCSX configuration, the bootstrap current
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should reduce the width of the m/n = 5/3 islands at the iota = 0.6 surface by almost a factor-of-
three.

The bootstrap current in NCSX is sufficient for this purpose despite the relatively high
collisionality of the plasma, which puts the island region (where ν*e  ≈ 0.5) in the "banana-
plateau transition", rather than "pure banana", regime of neoclassical transport.   For the cases
considered, the main contribution to the bootstrap current comes from the electron temperature
gradient, rather than the density gradient.  The key element in ensuring sufficient bootstrap
current is a relatively high value of the local βθe at the resonant surface together with a relatively
steep local electron pressure gradient.

3.9 Suppression of Magnetic Islands by Plasma Flow

3.9.1 Introduction

Resonant magnetic field perturbations can be shielded out at rational surfaces by plasma
flow.[56,57]  This effect is believed to play a major role in reducing the vulnerability of present
day tokamaks to resonant field errors.  The effect has been studied systematically in tokamak
experiments where externally imposed magnetic field perturbations have been varied and their
penetration threshold determined.[58,59,60]  The shielding effect can ameliorate the problem of
magnetic island formation also in stellarators, suppressing islands caused by externally imposed
magnetic fields, or by the magnetic fields produced by pressure driven currents in the plasma
itself.  We will see in this section that, for appropriate startup scenarios, the flow suppression of
resonant field perturbations is predicted to be stronger in NCSX than in tokamaks of comparable
size.  This could be helpful in reducing the vulnerability to field errors produced by finite
tolerances in the construction and placement of the magnetic field coils, and also allows larger
tolerances in the modification of the coil design to suppress islands.  The effect is not strong
enough to rely on it entirely for the suppression of the relatively large resonant perturbations
arising naturally in coil design, and flux surface targeting such as that described in Section 3.6 is
a prudent step in the design of the coils.

NCSX is predicted to have a strong toroidal flow, driven by the self-consistent ambipolar
electric field, and this flow is predicted to provide strong shielding of rational surfaces.
Tokamaks are most vulnerable to field error penetration just before the neutral beams are turned
on, when the flow is diamagnetic, and studies of field error penetration in tokamaks focus
particularly on ohmic discharges.  In contrast to tokamaks, NCSX is predicted to have a large
flow even in the absence of external momentum input.  NCSX also has an advantage that neutral
beam ions can be captured earlier in the discharge because flux surfaces exist at the outset.
Further, the externally generated transform provides a flexibility not available in tokamaks in
adjusting the _ profile to avoid low order rational surfaces early in the discharge, when the
vulnerability to resonant field error penetration is greatest.  These considerations suggest that
flow effects on resonant field suppression will be stronger in NCSX than in a comparable
tokamak, providing reduced vulnerability to resonant field errors.  On the other hand, because
coil design for stellarators does not have a symmetry principle to fall back on, stellarator coils
designed without the explicit targeting of resonant field error reduction may have relatively large
resonant field errors.  The net effect must be assessed by a quantitative estimate of the
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penetration threshold for resonant magnetic field perturbations and a comparison with calculated
resonant fields produced by the coils.  We discuss such a comparison for the NCSX coils in this
section.

3.9.2 Penetration of Resonant Fields

In the presence of a sufficiently strong plasma flow, a localized current is induced at
rational surfaces that shields out resonant magnetic perturbations.  While shielding out a large
fraction of the resonant field perturbation, the induced current at the same time interacts with the
remnant of the resonant field at the rational surface to produce a j x B torque there.  This
electromagnetic torque opposes the motion of the plasma at the rational surface, and acts to slow
the flow.  When the resonant perturbation is sufficiently large, the torque is large enough to
locally suppress the plasma flow, allowing the resonant perturbation to fully penetrate the
rational surface.

In a tokamak, the electromagnetic torque is opposed by a viscous torque produced by the
plasma flow.  The flow is diamagnetic in an ohmic tokamak, and is driven by the neutral beams
in a neutral beam heated tokamak with unbalanced beams.  The threshold for resonant field
penetration is determined by the relative magnitude of the electromagnetic torque and the
viscous torque, and is significantly higher in a tokamak where the flow is driven by neutral
beams.

In a stellarator, the threshold for penetration of resonant field perturbations will also be
determined by the relative magnitudes of the electromagnetic torque and of the torques
associated with the plasma flow. As we will discuss in Section 3.9.3, the electromagnetic torque
in a stellarator is comparable to that in a tokamak.  The flow driven by the ambipolar field in
NCSX is predicted to be quite large, comparable in magnitude to neutral beam driven flows in
tokamaks.  We can use penetration thresholds observed in neutral beam heated toakamk
experiments to estimate the expected thresholds for NCSX.  The electromagnetic torque will be
discussed in Section 3.9.3.  The torques associated with the plasma flows will be discussed in
Section 3.9.4.  In Section 3.9.5 we will estimate the expected penetration threshold in NCSX.

The torques are a function of the flow velocity at the rational surface.  In particular, once
a resonant magnetic field perturbation has fully penetrated a rational surface, if the perturbation
magnitude is then reduced, the threshold perturbation magnitude below which plasma rotation is
restored is lower than the perturbation threshold initially required to induce penetration in a
rotating plasma.  This suggests that it may be desirable in NCSX to use startup scenarios in
which the vacuum rotational transform is initially relatively flat and lies above the low order
resonances.  As shear is introduced and the transform on axis is reduced, the rational surfaces
enter the plasma from the magnetic axis.  Because the magnitude of the resonant perturbations
scale radially as rm-1 near the axis, where m  is the poloidal mode number, the surfaces are
initially unbroken and rotating with the bulk plasma motion.

3.9.3 Electromagnetic torque.
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Consider the case where a small perturbation of the magnetic field is turned on in a
plasma that initially has good flux surfaces.  This corresponds, for example, to a scenario where
the rotational transform is manipulated during startup so that the rational surfaces enter the
plasma from the magnetic axis.  Nonresonant Fourier components of the perturbation introduce
small ripples in the flux surfaces but do not break the flux surfaces.  To see this, express the
unperturbed magnetic field in magnetic coordinates: B0 = ∇Ψ0 x ∇θ + ι∇Ψ0 x ∇ϕ, where B0 is
the unperturbed field, and Ψ0 is an unperturbed flux function satisfying B0·∇Ψ0 = 0.  Write B =
B0 + δδδδB, Ψ = Ψ0 + δΨ.  To first order B0·∇(δΨ) = -δδδδB·∇Ψ0 .  In magnetic coordinates, this can
be expressed

B0·∇ϕ ( ∂ δΨ / ∂ϕ + ι ∂ δΨ / ∂θ )  =  -δδδδB·∇Ψ0 . (3-33)

Dividing by B0·∇ϕ and Fourier transforming, we get

(n - ι m) δΨnm = -(δδδδB·∇Ψ0 / B0·∇ϕ)nm. (3-34)

The nonresonant Fourier components just introduce small ripples in the flux surfaces.  If a
resonant Fourier component is present (one satisfying n = ι m), the flux surface is broken and a
magnetic island is produced.

In an ideal plasma, reconnection is prohibited and the flux surfaces cannot be broken.  A
surface current is induced at the rational surface that shields out the resonant component of
δδδδB·∇Ψ0 / B0·∇ϕ.  In the absence of plasma flow, the presence of a small resistivity causes the
surface current to decay, and allows the resonant field to penetrate the rational surface.  If flow is
present at the rational surface, a localized current continues to be induced which partially shields
out the resonant component of the field.  The induced current at the rational surface interacts
with the resonant magnetic field to produce a net torque.  The torque is increased somewhat,
relative to its value in cylindrical geometry, by mode coupling effects due to finite aspect ratio
and to plasma shaping.  The mode coupling effect has been studied experimentally in
COMPASS-D and in DIII-D by independently varying the currents in different external coils,
and measuring the penetration threshold as a function of the harmonic content of the perturbing
field.[60]  The strongest shaping components in NCSX are axisymmetric, and we can expect
these axisymmetric shaping components to dominate the mode coupling.

The above considerations suggest that, for a given amplitude of the resonant field, the
electromagnetic torque in NCSX will be roughly the same as that in a tokamak with the same
parameters (including the rotation frequency).  In comparing with a tokamak shot, we will use a
DIII-D shot in which the plasma boundary has the same axisymmetric elongation as that of
NCSX.

In comparing the electromagnetic torque with that in a tokamak, we will want to do the
comparison for perturbations having different mode number.  The theory for the linear visco-
resistive regime for a fluid model in cylindrical geometry [61] finds that, for a given plasma
rotation frequency, the penetrated flux scales as 1/n, while the torque for a given penetrated flux
scales as n, so that the effects cancel out and the penetration threshold  is independent of n.
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In comparing with DIII-D, we will also be concerned with the scaling with minor radius.
This will be discussed in Section 3.9.5.

3.9.4 Torque Produced by the Plasma Flow

In a tokamak, the plasma flow exerts a viscous force at the rational surface that opposes the
electromagnetic torque.  The viscous force may be estimated as ρµ∇2v, where ρ is the mass
density, µ is an anomalous viscosity, and v is the fluid velocity.  The momentum confinement
time, a2/µ, is generally found to be approximately equal to the anomalous energy confinement
time.  In an ohmic tokamak, the flow is believed to be produced by plasma diamagnetism.  In a
neutral beam heated tokamak with unbalanced beams, there is a much stronger flow driven by
the neutral beams.

When a resonant perturbation is imposed on a rotating plasma, the resulting
electromagnetic force slows the plasma rotation at the rational surface. The opposing viscous
force increases as the velocity at the rational surface decreases.  Initially, the plasma slows
continuously as the magnitude of the resonant perturbation is increased.  When the velocity
slows to about half its initial value, there is an abrupt transition to a locked mode with a
significantly increased island width.[61, 60].  To evaluate the force associated with the plasma
flow in NCSX relative to the viscous force in a tokamak, we calculate the forces when the
plasma velocity is half its natural value.  (That is, half the value it achieves in the absence of the
electromagnetic force.)

In a stellarator, the transport is not intrinsically ambipolar, and there is a radial current in
the absence of an electric field.  A self-consistent ambipolar electric field is produced that zeroes
out the radial current, and the electric field produces an E x B flow.  As the flow velocity is
reduced at the rational surface by an electromagnetic torque, a radial current reappears,
producing a j x B torque that opposes the electromagnetic torque.  There is also a viscous torque
produced by the E x B flow that opposes the electromagnetic torque.

To evaluate the torques associated with plasma flow in NCSX, we consider a reference
case whose transport properties are discussed in detail in Chapter 7, with 〈β 〉 = 4%, ne = 6 x 1019

m-3, min. νi* = 0.25.  We will compare with a DIII-D reference case[59] having 〈β〉 ≈3.7%, ne ≈
5 x 1019 m-3, κ=1.8 and a rotation frequency of f/n ≈ 12 kHz with about 5MW of injected neutral
beam power.

We evaluate the torques in NCSX at the ι = 0.6 rational surface.  The ambipolar potential
there is calculated to be about 20 kV/m in the reference case, corresponding to an ambipolar
toroidal flow velocity of about 85 km/sec.  The corresponding rotation frequency is about 10
kHz.  If the toroidal velocity is slowed to half this value by the electromagnetic torque, the radial
current is approximately 3 A/m2.  The current exerts a torque density at the rational surface of 15
Nt, in a direction which opposes the electromagnetic torque.  The total torque exerted directly by
the radial current is obtained by integrating the torque density across the magnetic island width,
or across the visco-resistive layer width[61], whichever is larger.  The island width in the
rotating plasma is calculated to be comparable to the layer width for NCSX parameters.  There is
also a viscous torque exerted by the plasma flow, approximately given by [ ]+

−∂∂ rv/4 22 ρµπ rR ,
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where [ ]+
−∂∂ rv/  is the jump in the radial derivative of the fluid velocity across the layer.  Because

of the narrowness of the layer width, the viscous torque is estimated to be much larger than the
torque exerted directly by jr.

The viscous torque can be written as lrR /v2 0
22 ρµπ , where 0v  is the toroidal velocity

corresponding to the ambipolar potential and l is the scale length of the velocity gradient near the
rational surface.  The velocity gradient is determined by the steady-state solution of the
momentum diffusion equation, with the torque exerted by the radial current as a source term.
We approximate the v dependence of rj  as linear, )vv( 0−≈αrj  where α is chosen to match

the calculated radial current when 2/vv 0= .  The velocity near the rational surface satisfies the

equation )v-(v/)v-(v 0
2

0
2

pBdrd αρµ = , with the boundary condition that 2/vv 0=  at the

rational surface.  To estimate µ we use an estimate of 25 ms for the confinement time for our
NCSX plasma.  Substituting in the parameters of our NCSX reference case we calculate a scale
length of 6 cm for the velocity gradient.

We are interested in the ratio of the viscous torque to the electromagnetic torque.  The
rR24π  factor corresponding to the area of the rational surface factors out of the numerator and

denominator, as does the factor of R multiplying the force to give the torque.  To compare the
viscous force density in the NCSX case with that in the DIII-D reference case we consider the
relative values of ρµv/l = 2πRρµf/l, where l is the velocity gradient scale length and f is the
toroidal rotation frequency.  The ratio of R is 1.7 / 1.4 = 1.2.  The ratio of the densities in the two
cases is 5 / 6 = 0.83.  For an energy confinement time on DIII-D of 120 ms, we estimate µ ≈ 3 m2

/ sec.  This compares with a value of 4.4 m2 / sec assumed for the NCSX calculation, giving a
ratio of 0.69.  The ratio of the frequencies is 1.2.  We take the velocity gradient scale length in
DIII-D to be comparable to the minor radius = 0.6 m, while that in NCSX has been calculated to
be roughly 0.06 m.  The viscous force density in DIII-D is calculated to be about 0.08 that in
NCSX.

3.9.5 Threshold for Penetration of Resonant Perturbations

Resonant magnetic perturbations are predicted to penetrate the rational surface when the
associated electromagnetic torque exceeds the viscous torque exerted by the plasma flow.  To
calculate a predicted penetration threshold for NCSX, we use the theoretically predicted scaling
with minor radius[61] to scale the observed threshold in the DIII-D reference case to that of a
tokamak with the same minor radius as NCSX.  The minor radius of the two devices differ by
about a factor of 2.  The density, temperature, magnetic field, and rotation frequency of the DIII-
D reference case are approximately the same as those predicted for the NCSX reference case.
The major radius is also approximately the same.  The electromagnetic torque in NCSX is
predicted to be approximately the same as that in the equivalent tokamak (Section 3.9.3).  The
torque associated with the flow in NCSX differs from that in an equivalent tokamak due to the
difference in the predicted velocity gradient scale length, giving a viscous force about a factor of
2.5 times that in the equivalent tokamak.  The electromagnetic force scales like 2

rB , so the
penetration threshold is about 1.6 times that in the equivalent tokamak.
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For a given value of the plasma parameters and of f, the theory in the visco-resistive
regime[61] predicts that the ratio of the electromagnetic to the viscous force in a tokamak scales
as 3/73/2 −Ra .  The penetration threshold therefore scales as 6/73/1 Ra − .    This predicts that a
tokamak with the dimensions of NCSX and the same plasma parameters and rotation frequency
as the DIII-D reference case should have approximately the same penetration threshold.  (The
scaling factor is 0.97.)  The experimentally observed penetration threshold in the DIII-D
reference case is 4

21 10x4/ −≈BBr .  Because of the shorter velocity gradient scale length

predicted for NCSX, due to the strong pr Bj  torque, the penetration threshold for NCSX is

predicted to be 410x6/ −≈BBrnm .

Because of the strong plasma flow predicted to be driven in NCSX by the ambipolar
electric field, the shielding of resonant perturbations is predicted to be strong, stronger than in
neutral beam heated discharges in DIII-D.   In particular, the q = 2 flux surface in NCSX is
predicted to have reduced vulnerability to field errors relative to that in tokamaks.  Tokamaks are
most vulnerable to field error penetration just before the neutral beams are turned on, when the
flow is diamagnetic.  The measured penetration threshold in an ohmic DIII-D plasma with a
density of 2x1019 m-3 is 4

21 10x2/ −≈BBr .

We compare the predicted penetration threshold with the resonant magnetic field
perturbation amplitude produced by the unhealed NCSX coils.  For this purpose, we initialize a
PIES calculation with a VMEC equilibrium and we run through one iteration of the PIES code.
VMEC provides the equilibrium under the constraint that the flux surfaces are preserved, as is
appropriate if the flux surfaces have been preserved by shielding due to plasma flow.  PIES
calculates the resonant magnetic fields produced by the plasma and coil currents.  In practice, the
PIES diagnostic provides the magnetic island width corresponding to these resonant fields.  We
back out the value of the resonant field from the equation for the island width in terms of the
resonant field: ( )( )nm

r BBm φι 01
2 /'/16w = , where the superscripts here represent contravariant

components.  The m = 5, n = 3 island width for the unhealed coils is determined to be about 18%
of the minor radius, corresponding to 15≈r

nmB G, or 310x3.1/ −≈BBrnm
.  This is above the

threshold for field error penetration determined above.  We conclude that some modification of
the coil design to suppress resonant magnetic field components is necessary.  The modified coils
described in this chapter are expected to be more than adequate for that purpose, and shielding of
resonant fields due to the relatively strong ambipolar flow in NCSX is likely to remove the small
residual islands for appropriate startup scenarios.

3.10 Conclusions

The initial calculation of the three-dimensional equilibrium is performed with the VMEC
code. This code makes the simplifying assumption that nested magnetic flux surfaces exist,
which greatly increases the speed of the calculation and thus makes possible the routine
assessment of stability and transport for candidate equilibria. To calculate the three-dimensional
equilibria with islands and stochastic regions the PIES code is used, which relaxes the
assumption of nested flux surfaces at the cost of computational speed. Critical improvements
have been made to both VMEC and PIES during the course of the NCSX design.
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 PIES has been used to improve the flux surface quality of the reference configuration by
small modifications that reduce the resonant magnetic field components. In fixed boundary
equilibria, the island content is reduced by alteration of the boundary, and in free-boundary
equilibria, the island content is reduced by variation of the coil geometry.

The latter technique, termed coil-healing, in essence amounts to a free-boundary
stellarator plasma-coil design algorithm, which adjusts the coil geometry to obtain a plasma
equlibrium with selected islands suppressed, while simultaneously preserving certain engineering
constraints and stability measures. It is this method which derived the healed coil set, M45h,
referred to throughout this document.

The flux surface quality of plasma configurations generated by the healed coil set, M45h,
have been extensively studied. Using a multi-filament coil description to model the finite build
of the coils, the PIES calculation shows that the flux surface quality is improved relative to that
of the single filament healed coils. Vacuum states with various rotational transform profiles are
shown which confirm that the healed coils allow good flux surfaces in the vacuum. Also, a
comparison of the healed coils with the unhealed coils for an alternative high β configuration
from the startup modeling (Chapter 9) shows that the healed coils produce improved flux surface
quality, relative to the unhealed coils, for configurations for which the coils were not optimized.
Having reduced the amplitude of the resonant magnetic field components produced by the coils
in the reference configuration, the flux surfaces are improved in other configurations as well.
Additional calculations with PIES, examining five snapshots in a startup scenario, are described
in Chapter 9.

Finally, neoclassical, χ⊥ / χ//, and flow effects are estimated. Neoclassical effects are
predicted to produce a substantial reduction in the island widths relative to those calculated by
the PIES code.  The effect of finite χ⊥ / χ// is to give a threshold island width, w0  ≈  0.035 a,
below which islands have little impact on confinement.  The strong ambipolar plasma flow that
is calculated for NCSX is predicted to shield out resonant magnetic fields at the rational surfaces,
reducing the sensitivity to field errors and removing many of the islands that appear in the PIES
calculations.

Including the corrections due to the finite neoclassical and χ⊥ / χ// effects, an assessment
of the flux surfaces as calculated by PIES for a range of configurations, including the reference
configuration with single and multi-filament coils, five different vacuum configurations, and five
equilibria representing snapshots at different times in a startup scenario (Chapter 9), indicate that
the flux surfaces for the healed coil set, M45h, are acceptable.
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