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Chapter 4 -- Ideal Magnetohydrodynamics Stability

4.1 Overview

In this chapter, we consider ideal stability of various MHD modes ranging from low
mode number (vertical modes, external kink modes) to infinite n (ballooning modes, Mercier
modes). We will discuss general MHD stability properties of compact QAS with finite plasma
current and various stabilization mechanisms. We will present details of stability results for the
NCSX reference configuration. Much of these results have already been published  [1,2,3,4,5,6].

In our design study, we have used the most advanced 3D MHD stability codes available,
such as Terpsichore-VVBAL [7] and COBRA [8,9] for infinite-n ballooning modes, Terpsichore
[10] and CAS3D [11] for global moderate-n external kink modes. These codes are essential for
self-consistent stability prediction of beta limits in stellarators. Extensive work has been done to
benchmark these stability codes.

The NCSX configuration is closely related to advanced tokamaks with reversed shear. In
fact, the initial design of NCSX started from an optimized reversed shear tokamak (ARIES
design) by adding appropriate 3D shaping, which generates external rotational transform while
maintaining quasi-axisymmetry. Due to quasi-axisymmetry, the bootstrap current in NCSX is
similar to that in an equivalent tokamak. Therefore, like in a tokamak, both the plasma current
and pressure drive MHD instabilities in the NCSX [3]. However, the MHD stability in the NCSX
differs significantly from an advanced tokamak due to stabilizing influences of 3D shaping. As a
result, the external kink modes are much more stable as compared to an advanced tokamak.

3D shaping of a QAS can influence the MHD stability in several ways as compared to an
advanced tokamak. 3D shaping generates external rotational transform. This is stabilizing for
both vertical and external kink modes because a smaller plasma current is present to drive
instability at fixed edge iota. 3D shaping also modifies iota profile that affects MHD stability
strongly. 3D shaping also strongly affects local magnetic shear and curvature that are important
to MHD stability. Our optimization experience shows that 3D shaping can be used effectively to
enhance MHD stability of a compact QAS. The NCSX reference configuration is a product of
such an optimization via 3D shaping.

This chapter is organized as follows. Section 4.2 describes the main stability codes used
in this work and their benchmarks. Section 4.3 discusses general stability properties of compact
QAS. Section 4.4 presents detailed stability analysis of the NCSX configurations for external
kink modes and vertical modes as well as ballooning modes. Section 4.5 discusses the effects of
wall on external kink stability. Section 4.6 discusses Toroidal Alfven Eigenmodes in the NCSX.
Finally, a summary is given in Section 4.7.
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4.2 Numerical Codes and Benchmarks

The NCSX design uses the most advanced codes for its stability calculations. Among
them, the ballooning stability is calculated using two codes: Terpsichore-VVBAL [7] and Cobra
[8,9]. The global kink and vertical mode stability is calculated using both Terpsichore [10] and
CAS3D [11]. All these stability codes are based on numerical equilibria as computed by the 3D
code VMEC [12].

4.2.1 Equilibrium code VMEC

The 3D equilibrium code VMEC [12] solves for 3D equilibria by minimizing plasma
potential energy. A key assumption of the code is that the flux surfaces are closed. As a result,
magnetic islands are not allowed. Our stability calculations are also based on this assumption.
We expect that the VMEC solutions are good approximations of real equilibria when magnetic
islands are small and the stability results should be reliable especially for global kink modes that
are largely determined by global equilibrium profiles. A more extensive discussion of the code
can be found in Chapter 3.

4.2.2 Ballooning codes Terpsichore and Cobra

The Terpsichore-VVBAL ballooning code [7] solves the standard ballooning mode
equation in Boozer coordinates [13]:

ργ2 (k⊥
2/B2) Φ - B • ∇(k⊥

2/B2)B • ∇Φ - p′/B2  (k⊥ x B) • κΦ = 0     (4-1)

where k⊥ = ∇φ- q(ψ)∇θ-q′(θ- θk)∇ψ with θk being the radial wave number. In Eq. (4-1), the first
term is from the kinetic energy, the second term corresponds to the field line bending energy, and
the last term corresponds to the destabilizing drive due to bad curvature and pressure gradient. A
major part of the code is mapping from VMEC coordinates to straight field line Boozer
coordinates. The ballooning equation is solved using a shooting method and the eigenvalue is a
function of s, θk, and α = φ-qθ where α is the field line variable. Note that unlike in tokamaks,
the local ballooning eigenvalues also depend on α in stellarators due to 3D geometry. The most
unstable eigenvalue in the space of (s,θk,α) determines the beta limit. Instead of solving for
eigenvalue ω2 in Eq. (4-1), the following marginal equation is solved with λ as an eigenvalue:

B • ∇ ( k⊥
2/B2) B • ∇Φ + (1 - λ) (p′ / B2) (k⊥ x B) • κΦ  =  0     (4-2)

where (1-λ) is a multiplier to the destabilizing curvature term. Note that λ > 0 for instability. This
method is advantageous over solving for ω2 because the eigenvalue λ is well defined for both
unstable and stable cases. In contrast, the eigenvalue γ2 is a continuous spectrum for stable cases
in Eq. (4-1) and is not well defined numerically.
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The ballooning code COBRA [8] solves the ideal ballooning equation for the growth rate
using finite element method. Eq. (4-1) then becomes a matrix equation. The computation can be
done in an extremely efficient and accurate way by taking advantage of the Stürm-Lioville
character of the ballooning equation. This property allows to estimate the growth rate to 4th order
on the mesh step size along the magnetic field line by variationally refining a previous 2nd order
estimated obtained from a standard matrix method. Fast evaluation is made possible by coupling
this evaluation process to a Richardson's extrapolation scheme, that will extrapolate to zero mesh
step size from a few previous evaluations of the growth rates computed on very coarse (and
therefore easy to evaluate) meshes. Important speed enhancements (of hundreds of times)
relative to standard codes can be achieved in this way [8]. Recently, a VMEC-based version of
COBRA [9] has been developed as a result of several convergence problems appearing on the
Boozer-coordinate-based COBRA (namely, the growth rate would sometimes change when the
number of Boozer modes included in the equilibrium mapping from the VMEC equilibrium
solution, turning unstable previously ascertained stable cases). In this latest version, the magnetic
field line must be numerically followed at the same time that the ballooning equation is solved in
a way that does not interfere with the Richardson's scheme. This has been achieved by locating
the magnetic field line at each mesh point via a Newton-Raphson scheme [9].

We have used both Terpsichore-VVBAL and Cobra in our configuration design. The
Terpsichore ballooning code was exclusively used in the past until Cobra became available
recently. Since Cobra is a much faster code, we have used it extensively in the search of plasma
configurations that are stable to ballooning modes at high beta.

To validate these two ballooning codes, we have made benchmark comparisons between them.
The first case of comparison is a QHS configuration that is unstable to ballooning modes at β as
low as 2%. At this beta, the configuration is Mercier stable so that the ballooning stability results
are not sensitive to the length of integration. Figure 4-1 on the left shows the comparison of the
eigenvalues as a function of the normalized toroidal flux (Note that the normalization for
eigenvalues of the two codes are different). Good agreement of the unstable region is evident in
the figure. It should be noted here that The definitions of the eigenvalue are different in the two
codes so that the absolute size of the eigenvalue does not agree. We have also compared the
results of the two codes for the QAS configuration C82, which was an earlier configuration
studied.. A comparison of a 4% beta case is shown in Fig. 4-1 on the right. Again, the region of
ballooning instability matches well in two codes. The fluctuation in eigenvalue in the stable
region calculated by Terpsichore is due to the resonances and the broadening of the
eigenfunction that requires even larger boxes of integration to obtain better solutions. The
important conclusion, however, is that the unstable region agrees well.
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Figure 4-1: Ballooning eigenvalues obtained with Terpsichore (red) and COBRA (green) as
function of normalized toroidal flux S for a QHS stellarator (left) and a QAS stellarator

(right)
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4.2.3 Global 3D codes Terpsichore and CAS3D

The three dimensional ideal MHD stability code Terpsichore [10] is used to calculate the
stability of global MHD modes. The code determines the eigenvalues of the ideal MHD
equations by minimizing the plasma potential energy as defined in the energy principle [14]:

ω2 δWk = δWp + δWvac                                                                 (4-3)

where -ω2 δWk is the kinetic energy, δWvac is the magnetic energy in the vacuum region between
plasma and conducting wall, and δWp is the plasma potential energy written as

δWp = 1/2 ∫ d3x { δB⊥
2 + [δB||  - B (ξ • ∇ p/B2)]2

+ Γ(∇ • ξ)2 + j|| • ξ x δB - 2 ξ  •  ∇p ξ • κ}                               (4-4)

where δB  is the perturbed magnetic field, ξ is the plasma displacement vector, Γ  is the
coefficient of specific heat, j|||||||| is the parallel equilibrium current along the field line, and κ is the
magnetic curvature. The displacement vector is written as

ξ = √g ξs ∇θ x ∇φ+ η(B x ∇s/B2)                                              (4-5)

where s, θ, and φ are radial, poloidal and toroidal variables in Boozer coordinates. Note that δB =
∇×(ξ×B) in ideal MHD. In Eq. (4-4), the first and second terms in the integrand are the
stabilizing field line bending energy and the magnetic field compression energy respectively, the
third term is the fluid compression energy, the fourth term is destabilizing due to parallel current
and is responsible for kink instabilities. Lastly, the fifth term is usually destabilizing due to
unfavorable curvature and pressure gradient.

It should be pointed out that for most of our results an artificial kinetic energy is used for
simplicity. This artificial kinetic energy is given by δWk = (1/2)∫d3x [(ξs)2+(η)2]. As a result, the
plasma displacement is incompressible since the parallel component only appears in the fluid
compression term. Although the calculated eigenvalue does not correspond to the physical
growth rate, the marginal stability boundary remains the same. Recently, a new version of
Terpsichore becomes available which uses physical kinetic energy and can calculate physical
growth rate at Γ = 0.

The Terpsichore code uses Fourier decomposition in poloidal and toroidal angles and a
finite element method for radial discretization. The radial and surface component of the plasma
displacement vector are represented by sums of Fourier series:



4-6

ξs (s,θ,φ)  =  ∑  ξl(s) sin(ml θ- nl φ+∆)

η(s,θ,φ)  =  ∑  ηl(s) cos(ml θ- nl φ+∆)                                    (4-6)

where ∆ is a phase factor and the subscript l is an index for each pair of poloidal and toroidal
mode numbers (m,n). The radial dependence is represented by piece-wise linear elements for ξl

and piece-wise constant elements for η. After minimization of the plasma potential energy, the
problem reduces to an eigenvalue problem of a linear matrix equation. The eigenvalue system is
solved by an inverse iteration method that can converge towards the most unstable eigenvalue.
An accurate eigenvalue requires sufficient radial grid points and poloidal/toroidal modes for both
the equilibrium and the perturbation.

The Terpsichore code uses a pseudo-plasma method for evaluation of the magnetic
perturbation in the vacuum. In this method, the perturbed magnetic field in vacuum is written the
same way as in plasma: δB = ∇×(ξ×Bv), but here Bv is a shearless pseudo-magnetic field. It can
be shown that this representation is general as long as Bv is shearless. In this way, the vacuum
region can be treated as a pressureless and currentless plasma and can be solved in the same way
as in plasma.

The CAS3D [11] code is similar to Terpsichore in many aspects. It uses the same
representations of the equilibrium and the perturbation as in Terpsichore and solves the same
type of matrix equation for unstable eigenvalue. However, it differs significantly from
Terpsichore in the treatment of vacuum. The CAS3D uses a Green function method in
calculating the vacuum magnetic energy. Thus it can compute free boundary stability without a
conducting wall. In contrast, a conducting wall is necessary present in Terpsichore model
because it uses a finite grid for the vacuum. In practice, the conducting wall can be put far away
so that the effects of the wall is minimal on the stability of external kink modes and the
associated beta limits.

The Terpsichore code has been used for most of MHD calculations in the NCSX project
for the sake of code speed. The CAS3D is used to benchmark the Terpsichore results and for
some of the stability analysis.

The MHD calculations in stellarators differ from axisymmetric tokamaks in several ways.
A key difference lies in Fourier mode selection for the perturbation. Unlike in tokamaks,
different toroidal modes are coupled together due to 3D geometry. For stellarators with field
period Np, Fourier harmonics with toroidal mode number n are coupled to n+kNp, where k is an
arbitrary integer. There are Np/2+1 families of modes for even Np and (Np-1)/2+1 families for
odd Np. For example, there are two families (N = 0, N = 1) for both Np = 2 and Np = 3 and there
are three families (N = 0, N = 1 and N = 2) for Np = 4. Within one family of modes, there are
infinite number of eigenmodes with different mode spectra. Typically, the external kink modes
have low toroidal mode numbers for the dominating harmonics. The vertical mode in stellarators
belongs to the N = 0 family which preserves the stellarator periodicity. However, an eigenmode
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of the N = 0 family can have characteristics of a kink or ballooning mode when the dominating
toroidal mode number is not zero.

A subtle issue of 3D stability calculations is the phase dependence. In tokamaks, the
stability is independent of the phase due to axisymmetry. This is not so for the N = 0 family in
stellarators. The stability also depends on the phase for the N = Np/2 family when Np is even.
Assuming stellarator symmetry for the underlying equilibrium, only two values of the phase, ∆ =
0 (sin phase) and ∆ = π/2 (cos phase), are meaningful because the modes with sin phase are
decoupled from the modes with cos phase. The phase should be zero for the N = 0 vertical mode.

The Terpsichore code has been benchmarked extensively. Earlier it was shown [15] that
the Terpsichore's stability results agree well with 2D stability codes for growth rates of fixed
boundary MHD modes in 2D analytic Solov'ev equilibria. In the present work, we have
benchmarked Terpsichore against the 2D stability code PEST[16] and the 3D code CAS3D [11]
for external kink modes for an optimized reversed shear tokamak equilibrium from the ARIES
studies [17]. The calculated beta limit of the n = 1 external kink mode using Terpsichore is
2.34%, which agrees well with the PEST result of 2.4% and the CAS3D result of 2.3% [20]. We
have also benchmarked the code for the n = 0 vertical mode in a large aspect ratio tokamak.

Figure 4-2: The critical normalized wall radius versus elongation for a elliptical plasma

Figure 4-2 plots the critical wall radius as function of ellipticity for the stability of the n = 0
vertical mode in an elliptical plasma with constant current density profile and zero beta. The
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Terpsichore results (shown in dots) agree well with the analytic stability criterion [18] (solid
line) give by

                           
1
1
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+

=
κ
κ

                                                                       (4-7)

where the normalized wall radius is defined by rw = (a′ + b′)/(a+b) with a and b (a′ and b′) being
the radius of the elliptical plasma ( a confoncal wall) along the horizontal and vertical direction
respectively. Here, κ = b/a. Most recently, we have compared stability results of Terpsichore
with those of CAS3D for an real 3D stellarator equilibrium with finite beta and current [19].
Figure 4-3 shows the growth rates of the N = 1 external kink mode obtained by Terpsichore and
CAS3D as function of plasma beta for the previous NCSX configuration C82. The results are
obtained with 108 pairs of (m,n) for the kink mode and are converged in radial grid points and
equilibrium Fourier modes. The CAS3D results are obtained without a conducting wall. The
Terpsichore results are obtained with a conducting wall 2.5a away from the plasma edge so that
the effects of wall on the beta limit should be negligible. We can then conclude that the
Terpsichore's stability thresholds agree fairly well with those of CAS3D, at least for C82.

Figure 4-3: The N = 1 external kink eigenvalues as function of plasma beta obtained with
CAS3D (open circles) and Terpsichore (open squares)
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4.3  Kink and Vertical Mode Stability
Here we present general features of kink and vertical stability in a current-carrying finite

beta compact QAS [4,6] and specific results for NCSX reference configuration. As described in
the previous sections, the NCSX design point was initially obtained by shaping a reversed shear
advanced tokamak (ARIES design) three dimensionally. The 3D shaping generates external
rotational transform while maintaining quasi-axisymmetry. As a result, the iota profile is
monotonically increasing until near the edge of plasma (or reversed shear for most of the minor
radius in tokamak sense). We will show that stability of external kink modes and the vertical
mode can be improved over those of advanced tokamaks by external rotational transform and
pure 3D geometric effects.

First we consider the effects of external rotational transform on kink and vertical stability.
Compared to advanced tokamaks, QAS configurations have lower plasma current because the
external rotational transform replaces part of current-generated transform in tokamaks (at fixed
edge iota or q). As a result, the external kink and vertical mode stability is improved in QAS due
to lower current. We find that find that the vertical mode (of n = 0 family) can be much more
stable in QAS devices than in tokamaks [4]. The QAS configuration C82 is calculated to be
robustly stable to the vertical mode at a high averaged elongation (κ ∼ 2).

Figure 4-4: The eigenvalue of the vertical mode versus fraction of c82's nonaxisymmetric
shape

Figure 4-4 shows the eigenvalue of the vertical mode as function of the fraction of
nonaxisymmetric shape, f, at fixed current profile and zero beta. Here f = 1 corresponds to the
full C82 shape and f = 0 corresponds a tokamak with the axisymmetric shape of C82. Equilibria
are obtained by linear interpolation of the tokamak shape and the C82 shape (i.e., Rm,n(f) = fRm,n,
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Zm,n(f) = fZm,n for n ≠ 0, where Rm,n and Zm,n are Fourier coefficients of the C82 shape). We
observe that there is a large stability margin for the vertical mode in C82 with the marginal point
at f = 0.6. The results of Fig. 4-4 are obtained with zero beta because of equilibrium convergence
problem due to low ι at small f. At finite f, the effects of beta are found to be stabilizing. Thus,
an even larger margin is expected at finite beta. This robust vertical stability is mainly due to
effects of the external rotational transform. We have derived an analytic stability criterion for
vertical mode in a large aspect ratio QAS with constant current density and constant external
rotational transform [3]. The external rotational transform needed for stability is given by:

          
1+

−
=

2κ
κκ 2

i   F                                                                         (4-8)

where Fi = ιext / ιtotal is the fraction of external rotational transform and κ is the axisymmetric
elongation. This criterion has been confirmed by the Terpsichore code, as shown in Fig. 4-5. The
calculated critical external transform (solid dots) agrees reasonably well with the analytic result
(solid line). Physically, the external transform is stabilizing because the external poloidal flux
enhances the field line bending energy relative to the current-driven term for the vertical
instability. We note that Fi = 0.5, κ = 1.9 for C82 and Fi = 0.75 and κ = 1.8 for NCSX. Thus,
both C82 and NCSX are very stable to the vertical mode according to this analytic criterion.

Figure 4-5: The critical value of fraction of external transform as function of
axisymmetric elongation
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Second, we show that external kink stability can be enhanced in QAS by controlling the iota
profile via 3D shaping. Specifically, it is found that the edge magnetic shear is stabilizing for
external kink modes [4]. Figure 4-6 shows the calculated N=1 external kink mode eigenvalue λ =
-ω2 as a function of global magnetic shear near the edge defined by ι(1) - ι(0.75) at ι(1) = 0.46.
These results are obtained for a Np = 4 QAS with R/a = 2.1 and β ∼ 6.3%. The variation of shear
is controlled entirely by 3D plasma boundary shape while keeping the current and pressure
profiles fixed. We observe that the external kink mode is stabilized by edge magnetic shear.
Physically, the shear is stabilizing because it enhances the field line bending energy.

Third, we show that external kink stability can also be enhanced in QAS by pure 3D
geometry effects at fixed iota profile [4]. 3D shaping can affect important magnetic field
properties in such a way so the MHD stability is favorable. In practice, favorable 3D shaping can
be found by using a numerical optimizer that uses kink stability as a target function. Two
examples are shown here to illustrate the pure geometry effects on MHD stability. The first
example is an external kink stabilized by local magnetic shear controlled by 3D shaping. Figure
4-7 shows plasma cross-sections of a three field period R/a = 3.5 QAS before (left) and after
(right) the stability optimization. The corresponding rotational transform profiles are shown in
Figure 4-8.

Figure 4-6: The n = 1 external kink eigenvalue versus edge magnetic shear for a four field
period QAS with R/a = 2.1 and ββββ    ∼∼∼∼    6.3%
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Figure 4-7: Plasma cross-sections of a three field period QAS before optimization (left) and
after optimization (right)

Figure 4-8: Iota profiles of a three field period QAS before optimization (solid line) and
after optimization (dashed line)
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The initial configuration (C3m) is unstable to an n = 1 kink with eigenvalue of λ  =
1.8_10-3. Figure  4-9 plots the perturbed pressure contour of the corresponding eigenmode at the
two symmetric cross-section (at φ = 0 and φ = π/3). The unstable mode peaks on the outboard
side of the plasma (i.e., ballooning) due to destabilizing bad curvature. The final configuration
after optimization (called C82) is marginally unstable with an eigenvalue of λ = 2.6_10-5 at β =
3.9%. We note that the change in the iota profile from C3m's to C82's is minimal and the two
order of magnitude reduction in kink eigenvalue can only be attributed to pure geometry effects
due to 3D shaping. The major change in shaping from C3m to C82 is an indentation of plasma
boundary on the outboard side at the half-period cross section that is found to be most effective
for stabilization. To understand the 3D shaping effects on stability, we have evaluated changes in
stabilizing and destabilizing terms from C3m's to C82's. Table 4-1 list the relative contributions
of these terms normalized by the vacuum magnetic energy for both C3m and C82.

Table 4-1: The breakdown of stabilizing and destabilizing terms in the plasma potential
energy normalized by the vacuum energy for the most unstable n = 1 external kink mode in

C3m and C82

Vacuum line bending kink ballooning
c3m 1.00 4.05 -3.98 -1.72
c82 1.00 4.51 -3.87 -1.64

The line bending column in Table 4-1 corresponds to the sum of first and second terms in
δWp [Eq. (4-4)], while the kink and ballooning columns correspond to the third and the forth
term respectively. We note that the parallel current term (kink column) contributes about 70% of
the total destabilizing sum for both cases and is thus the main destabilizing mechanism for the n
= 1 external kink modes, in accordance with usual expectation. However, the ballooning term
also contributes significantly to the instability. This is the reason the mode exhibits the strong
ballooning feature shown in Fig. 4-9. Thus, the unstable mode should be called kink-ballooning
mode. The pressure also contributes indirectly to the kink term through the parallel Pfirsch-
Schluter current. For both cases, the Pfirsch-Schluter current contributes about 57% of the kink
term. Thus, the pressure-induced Pfirsch-Schluter current is actually more important than the
volume-averaged parallel current for these two configurations. We now discuss why the 3D
shaping change from C3m to C82 stabilizes the external kink mode. We observe from Table 4-1
that the main difference between C3m and C82 is the field line bending term. This suggests that
the effects of shaping on local magnetic shear play a significant role. Figure 4-10 shows the
contours of local magnetic shear _ of C82 on the s = 0.63 flux surface  (the δWp peaks
approximately at this surface). Here, the local magnetic shear _ is defined by _ = -(√g/Ψ′2) h ·
∇×h with √g being the Jacobian and h = B × ∇s / |∇s|2. Note that the global magnetic shear dq/ds
is a surface average of _ where q = 1/ι. The value of local magnetic shear in Fig. 4-10 ranges
from -74.3 to 28.6, while the global shear is dq/ds = -2.4. This shows that the local magnetic
shear is dominated by helical contribution and is much larger than the global shear. Figure 4-11
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compares the local magnetic shear of C3m with that of C82 on the outboard side at s = 0.63.
Indeed we find that the local shear of C82 is substantially larger than that of C3m on the
outboard side. This indicates that the local shear is responsible for the change in the field line
bending energy and the stability between these two configurations.

Figure 4-9: contours of perturbed pressure at the two symmetric cross-sections for
C3m

.

Figure 4-10: The contour plot of the local magnetic shear of the configuration c82 on
the s = 0.63 flux surface for one field period (0 <<<<    φφφφ    <<<<    2ππππ/3). The local shear value for
some contours is marked
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Figure 4-11: The contour plot of the local magnetic shear for the configuration C3m (left)
and C82 (right) on the s = 0.63 flux surface on the outboard side of the torus ( -0.7

<<<<    θθθθ    <<<<    0.7). The local shear value for some contours is marked

We now discuss effects of magnetic well, which is a function of the 3D geometry. In our
search for more robust configurations with good coil characteristics, we observed the importance
of externally generated magnetic well on global MHD instability, especially the external kinks.
Specifically we showed that the external kink stability is strongly correlated with the size of
magnetic well. To isolate the effects of magnetic well, we generated a series of four QAS
configurations with different magnetic wells. The shapes of last closed flux surfaces for each of
the four configurations (labelled KG7a, KG7b, KG7c and KG7d) are shown in Figure 4-12. The
corresponding external magnetic well profiles, defined as (1-V′(s)/V′(0)) in the absence of the
plasma current and pressure, are plotted in Figure 4-13. This series is generated by varying only
a single term in the boundary harmonics, i.e., Z(m,n) = Z(2,1)., at fixed current and pressure
profiles. By modifying this single term, we are able to change the magnetic well from a depth of
7% to 4%, 0%, and then -10% while maintaining approximately the same external iota profile
(from 0.12 at center to 0.33 at the edge). The results of the N = 1 external kink stability from
Terpsichore are shown in Figure 4-14 which plots the kink eigenvalue as function of plasma beta
for each of the configurations. We observe that the beta limit increases from 2.2% (KG7e) to
5.2% (KG7a) as the corresponding magnetic well varies from -10% (magnetic hill) to 7%. The
calculations for the N = 0 family showed that the critical beta is always higher than those for the
N = 1 instability. Since the rotational transform profiles of these cases are similar for these
configurations, the difference in the kink stability can be attributable to the difference in the
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magnetic well. Physically, a strong magnetic well reduces the pressure gradient drive (ballooning
term) and enhances the stability of global kink modes.

Figure 4-12: Poincare sections equally spaced over half a field period for four
configurations with decreasing depths of externally generated magnetic well

Figure 4-13: Vacuum magnetic well as a function of s
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Figure 4-14: Eigenvalue of the N = 1 external kink mode versus averaged plasma beta for
four configurations with increasing depths of magnetic well

4.4 Stability of the NCSX configuration

Here we will present stability results for the NCSX reference configuration in terms of
Mercier stability, ballooning stability and, external kink and vertical mode stability. The NCSX
configuration was found by optimizing the MHD stability of Mercier, ballooning and external
kink modes along with quasi-symmetry and other desired targets. Thus, the configuration is
designed to be stable (marginally) to all these modes. However, absolute stability is not
guaranteed for several reasons. First, the stability evaluations in the optimizer are not complete.
For example, ballooning stability was calculated on only two field lines for each flux surface.
Second, the numerical resolutions used are fairly crude for the sake of speed and available
memory. Here, we show a more complete stability analysis and convergence study to validate the
optimization results.

4.4.1 Mercier Stability

Figure 4-15 shows the Mercier criterion ( > 0 for stability) as a function of the normalized
toroidal flux s. It is evident that Mercier modes are stable over the whole radii of the plasma. As
stated in the preceding sections, the NCSX configuration was designed to have magnetic well in
vacuum. The magnetic well is maintained in the full beta full current reference configuration.
Thus, the favorable Mercier stability is not surprising.
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 Figure 4-15: Mercier criterion for the NCSX reference configuration

4.4.2 Ballooning Stability

Figure 4-16 plots the ballooning eigenvalues ( > 0 for instability) versus S calculated with
COBRA  for two cases: the solid line corresponds to the NCSX reference configuration (with
magnetic islands healed) and the dashed line corresponds to its predecessor (with islands
unhealed). We observe that the reference case is unstable to the infinite-n ballooning modes in a
small region near the edge of plasma while the unhealed case is stable in all radii. This is because
the unhealed configuration was obtained by optimizing both kink and ballooning stability. On the
other hand, the reference configuration was obtained by minimizing the magnetic island and
external kink instability while the ballooning stability was not included in the optimization.
Work is in progress to further optimize the reference configuration by targeting ballooning
stability as well as kink stability and magnetic island size.
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Figure 4-16: Ballooning eigenvalue as a function of S for the NCSX reference
configuration (M45h, solid line) and for the configuration with unhealed
magnetic islands (M45, dashed line).

The stability results presented here are valid for infinite-n ideal modes. In practice, only finite-n
modes can be unstable due to Finite Ion Larmor Radius (FLR) stabilization. Thus, an important
issue is the stability of finite-n ballooning modes and associated beta limits. We carried out
finite-n ballooning mode stability calculations using the global code Terpsichore for the NCSX
reference configuration. The results showed that the finite-n ballooning modes (fixed boundary
condition) are significantly more stable than the infinite-n modes. The critical beta for finite-n
ballooning modes is estimated to be around 5.8% for toroidal mode number up to n=45.

4.4.3 External Kink and Vertical Stability

As mentioned before, the NCSX configuration was optimized to be marginally stable to the N =
1 family of external kink modes using a limited resolution. Typically 49 radial grid points, 94
VMEC modes, 264 Boozer modes for mapping, and 91 modes (n ≤ 8) for perturbation are used
with Terpsichore in the optimization. Here we show a more complete stability analysis for both
the  N = 1 and the N = 0 families using higher resolutions.
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We have carried out a systematic convergence study for the stability of global MHD
modes in the NCSX configuration using Terpsichore. Up to 291 radial grid points, 111 VMEC
modes, 339 Boozer mapping modes, and 239 modes (n ≤ 20) for perturbation are used. We found
that the stability is most sensitive to number of perturbation modes. Since the NCSX
configuration is optimized to be marginal to the external kinks, we use two artificial multipliers,
coec and coep for the current-driven kink and pressure-driven ballooning terms in δW
respectively, to adjust the size of the two destabilizing terms. In this way, we can determine how
far an equilibrium is from marginal stability boundary by varying these two coefficients.

Recall that the reference case is stable to the kink modes for 91 perturbation modes with toroidal
mode number up to 8. Here we re-evaluate the stability by adding high-n harmonics with n up to
17 and total number of perturbation modes up to 201. The results show that the reference case is
weakly unstable to high-n external kink modes with dominating toroidal mode numbers  n ~ 10.
Figure 4-17 shows the kink eigenvalue λ as a function of number of the perturbation modes (at
coep = coec = 1.0) for the most unstable eigenmode (N=1 family).  The largest harmonic is (m,n)
= (17,11) . We observe that the eigenvalue converges for > 190 modes. Figure 4-18 shows the
kink eigenvalues as function of coep (at coec = coep) for the N = 1 family (solid dots) and the
N=0 family (solid squares). Figure 4-19 shows the corresponding normal component of plasma
displacement vector (versus radius) for the N=1 family (on the left with the largest harmonic
being (17,11)) and the N=0 family (on the right with the largest harmonic being (14,9)). We
observe that the eigenmode of the N=1 family yields a critical value of coep = coec ~ 0.925. This
shows that the NCSX configuration is weakly unstable to high-n external kinks. This weak
instability can easily be stabilized by modifying the 3D shape slightly as demonstrated for the
NCSX PVR reference configuration LI383.

Finally, the vertical mode is expected to be robustly stable because a large fraction of the
total rotational transform is externally generated by coils.
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Figure 4-17: The most unstable kink eigenvalue of N=1 family as function number
of perturbation Fourier modes for the NCSX reference configuration.
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Figure 4-18: The kink eigenvalues versus coep for the N=1 family (dots) and
the N=0 family (squares).



4-24

Figure 4-19:  The radial displacement of the N = 1 (left) and N = 0 (right)  most unstable
eigenmode at coep = coec = 1.0

4.5 Effects of Wall on Kink Stability

In the preceding section, the wall is prescribed to be more than twice the minor radius
away from the plasma edge so that the effects of wall on the kink stability is negligible. Here we
investigate whether a much closer wall (say dwall ∼ 0.3 < a > ) could have a significant effect on
the beta limit. This is motivated by the fact that in an actual experiment, the vacuum vessel is
close to the plasma over a significant fraction of the surface and they could influence the stability
of external kink modes.
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Figure 4-24 shows the most unstable eigenvalue of the N = 1 family as a function of the
wall distance from the plasma edge, dwall for the LI383 configuration. The plasma beta is raised
from the baseline β = 4.25% to β = 5.0% with fixed plasma boundary shape in order to have
instability with a close wall. The solid dots correspond to a fixed baseline plasma current
whereas the solid square correspond to an enhanced plasma current proportional to the plasma
beta. A conformal conducting wall is prescribed for these results. We observe that for both cases,
stabilization of the external kinks (at β = 5%) requires a very close fitting wall at about dwall

∼ 0.05 or dwall/ < a > ∼ 0.1. This means that both the vacuum vessel and the conducting structures
are not expected to affect the kink stability significantly in a real discharge of NCSX.

Figure 4-20: The N = 1 eigenvalue as function of wall distance at ββββ = 5%

4.6 Alfvén Mode Stability

It is known that energetic particles can resonantly destabilize shear Alfvén waves, such as
Toroidal Alfvén Eigenmode (TAE), by tapping the free energy associated with their pressure
gradient. TAEs are stable discrete shear Alfvén modes formed as a result of mode coupling of
neighboring poloidal modes. Because TAEs are weakly damped, they are most susceptible to
energetic particle destabilization. Since their discovery in 1985, TAEs have been routinely
observed in NBI-heated tokamak plasmas (TFTR, DIIID, JT-60U) driven by fast neutral beam
ions and in ICRH-heated plasmas driven by fast minority ions (TFTR, JT-60U, JET) [21]. Alpha
particle-driven TAEs were first observed in the TFTR DT experiments [22]. NBI-driven TAEs
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have also been observed in stellarators (W7-AS [23], CHS and LHD [24]). TAE instability can
sometime cause large losses of energetic ions, resulting in low heating efficiency.

In NCSX, the plasma is heated by neutral beam heating. Thus, questions naturally arise:
can TAEs be destabilized in NCSX? If so, is there significant beam ion loss due to the
instability?

A necessary condition for TAE instability is to satisfy the wave particle resonances
(either v|| = vA or the sideband v|| = vA/3.). For the NCSX standard high-beta operation, the main
parameters at β = 4% are: B0 = 1.2T, R0 = 1.4m, the central electron density ne(0) = 7.7_1013

(cm-3), and βbeam ∼ 0.5%. The neutral beam ions (hydrogen) are injected tangentially into
hydrogen plasmas at 50kev. Thus, we have v|| /vA ∼ 1.0 and the resonance condition can easily be
met.

The TAE stability in NCSX, on the other hand, is subtler. To excite TAEs, the beam ion
drive must exceed the mode damping. However, both the drive and the damping are sensitive
function of plasma parameters and profiles. Furthermore, the 3D geometry of NCSX introduces
another variable in this equation. Thus, there is no reliable ways to predict the TAE stability
threshold without a systematic numerical modeling.

In actual tokamak experiments, the critical beam ion beta for instability varies widely,
from βbeam,crit ∼ 0.1% in the NNBI-heated JT-60U plasmas to βbeam,crti ∼ 0.5% in the NBI-heated
DIIID plasmas. Since βbeam ∼ 0.5% at 5MW of beam heating power in NCSX, the TAE
instability is possible in this device.

Although we expect the physics of TAE stability and related transport in QAS to be
similar to that in tokamaks, the 3D geometry of NCSX does introduce important new physics
effects. Because the mode coupling and Alfvén spectrum depend not only on the magnetic field
strength but also on 3D geometry, significant mode coupling between different toroidal mode
numbers is expected especially for high-n modes. This would result in additional continuum
damping. This new mode coupling would also produce new types of Alfvén eigenmodes with
their frequencies typically higher than TAE's. Another important difference is in q profiles (or
iota profiles). Unlike in tokamaks, the NCSX has a q profile monotonically decreasing in radius
until the very edge of the plasma. Thus, the Alfvén continuum gaps are not aligned over the
whole plasma. This implies that the continuum damping is expected to be significant for global
TAEs and the TAE instability is most likely to be located near the center of plasma, as observed
in LHD [24].

In NCSX, the linear stability and nonlinear dynamics of TAE or other type of Alfvén
Eigenmodes can be studied systematically over wide range of parameter space. In particular, the
new physics introduced by the 3D geometry can be studied by varying the 3D shaping via coil
currents. In this regard, we anticipate adding a set of coils to excite Alfvén eigenmodes
externally, as has been done in JET using its saddle coil system [25]. This capability will allow
measurement of Alfvén eigenmode frequencies and their damping rates and thus a systematic
study of 3D effects on TAE stability.
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4.7 Summary

We have presented the physics basis for ideal MHD stability in NCSX. The highlights of
this chapter are as follows.

The most advanced MHD stability codes were used in the design of NCSX. We have
validated these modern codes by benchmarking two independent local stability codes for infinite-
n ballooning modes (Terpsichore-VVBAL and Cobra) and two independent global MHD
stability codes for external kink modes (Terpsichore and CAS3D).

We have identified four physical mechanisms for stabilization of external kink modes and
the vertical mode via 3D shaping. It was shown that 3D shaping can stabilize the vertical mode
via external rotational transform and that 3D shaping can stabilize the external kink modes via
magnetic shear (both global and local) and vacuum magnetic well.

Extensive convergence study has been done for both ballooning modes and external kink
stability in the NCSX reference configuration, which was optimized to be marginally stable. An
weak high-n external kink instability was found at higher numerical resolutions. A global
calculation shows that finite-n ballooning modes are significantly more stable than the local
infinite-n modes.
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