NCSX Flux Surfaces

Presented by Allan Reiman for the NCSX Magnetic Surface Group

NCSX Conceptual Design Review Princeton, NJ May 22, 2002

NCSX is Designed to Have Good Flux Surfaces

- NCSX coils designed to produce good flux surfaces. (PIES code)
- NCSX designed so that neoclassical effects reduce island widths.
- Have verified that coils give acceptable surfaces for range of configurations.
 - Equilibrium calculations with PIES code. (Do not include neoclassical effects.)
 - $\circ\,$ Estimate neoclassical effect and effect of finite χ_{\perp} / $\chi_{\prime\prime}$ in assessing effective total surface loss.
- External and internal trim coils designed to extend range of configurations with good surfaces.
- Strong ambipolar flow predicted to shield out resonant perturbations.

Coil Design Has Been Modified to Produce Good Surfaces

- "Dynamic healing" algorithm modifies coils in each PIES iteration to suppress targeted islands.
- Preserves engineering and physics constraints on coil curvature, minimum

distance between coils, kink stability. (Stable up to n=45. Ballooning restabilized in startup scenario.)

Converged, freeboundary PIES calculation with healed coils. Sum of effective island widths < 1%.

PIES calculation with original coils. Continues to deteriorate as iteration proceeds.

plasma boundary in VMEC calculation with unhealed coils.

Small Islands Have Little Effect on Transport

• Large islands short-circuit confinement by allowing heat to flow along separatrix.

- For narrow islands, path length along field line long, and parallel conductivity prevents short-circuiting of confinement.
- Critical island width at which transport due to island is comparable to cross-field transport: $w_0 \approx 5 (\chi_{\perp} / \chi_{//})^{0.25} (RL_{\iota} / m\iota)^{0.5}$, where L_{ι} is shear scale length.
- Estimate $w_0/a~\approx~3.5\%$ for m=5 island in NCSX. (At β = 4.2%, B = 1.2 T, $<\!\!n_e\!\!>$ = 5.8 x 10^{19} m^{-3})
- In calculating flux surface loss, use effective island width $w/(1+(w_0/w)^4)$. (Effective diffusivity across island $\chi \approx \chi_{\perp}(1+(w/w_0)^4)$).

Multi-Filament Model Improves Flux Surfaces

Neoclassical Effect Reduces Island Widths in NCSX

- Gives neoclassical tearing mode in tokamaks ($\iota' < 0$).
- For *i*'>0, effect predicted to reduce NCSX island widths.

• Evaluation of effective island widths takes into account finite $\chi_{\perp} / \chi_{//}$ effect, as well as neoclassical effect.

Flux Surfaces Evaluated for Five Snapshots in Startup Scenario are Acceptable

Good Flux Surfaces at β Values Exceeding Design Value, with Transport Determined Profiles

Summary of Effective Flux Surface Loss for PIES Calculations

(Details in Physics Design Document)

	case	β (%)	Loss of	Sum of	Total effective
			surfaces	effective	flux surface
			at edge	island widths	loss (%)
			(%)	(%)	
Reference case	S3	4.1	0	<1	<1
Vacuum cases	vac1	0	3.1	<1	3.1
	vac2	0	10.4	<1	10.4
	vac3	0	5.2	<1	5.2
	vac4	0	<1	<1	<1
	vac5	0	2	<1	2.0
Startup	t=50	1.2	6.2	3.8	10.0
snapshots	t=100	3.4	0	10.1	10.1
	t=116	3.7	0	5.5	5.5
	t=139	3.9	11.4	1.2	12.6
	t=303	4.6	0	2.5	2.5

• Expect further improvements using trim coils.

An Additional Effect: Plasma Flow Shields out Resonant Perturbations at Rational Surfaces

- Plays major role in reducing vulnerability of present day tokamaks to field errors.
- Tokamaks most vulnerable just before neutral beams turned on, when flow diamagnetic.

Predicted NCSX rotation frequency \approx DIII-D cases where penetration threshold studied with neutral beams turned on. Strong flow driven by ambipolar E_r even in absence of external momentum input. Predicted resonant magnetic perturbation penetration threshold \approx measured DIII-D threshold with beams turned on. $(B_{rnm}/B \approx 6 \times 10^{-4} \text{ for } n \approx 6 \times 10^{19} m^{-3})$

Conclusions

- A new coil design code has been built around PIES and applied to NCSX.
 Coil design modified to heal flux surfaces, while preserving engineering and physics constraints.
- More accurate modeling of coil pack (using multiple filaments) improves calculated flux surfaces.
- Calculations for five different vacuum states and five snapshots during startup scenario find acceptable flux surfaces loss.
- Trim coils will provide additional flexibility.
- Strong ambipolar flow additionally predicted to shield out resonant perturbations.