### Peer Review for Modular Coil Winding Form Selected Issues

B. Nelson, D. Williamson, A. Brooks, HM Fan, M. Cole and the WBS-1 Design Team

NCSX Peer Review January 23, 2003

### Outline

- Introduction to NCSX modular coil design
- Purpose of review
- Review elements:
  - Poloidal electrical break
  - Cooling configuration:
  - Tolerances
  - Schedule
- Other features to be added to modular coil winding form model
- Summary

#### National Compact Stellarator Experiment NCSX



#### **NCSX Coil Set Assembly**

| Coil set      | Function:                                                                            | 5.5-m |  |
|---------------|--------------------------------------------------------------------------------------|-------|--|
| Modular coils | Basic quasi-<br>axisymmetric magnetic<br>configuration                               |       |  |
| PF coils      | Inductive current drive,<br>plasma shaping                                           |       |  |
| TF            | Addition or subtraction<br>of toroidal field for<br>control of magnetic<br>transform |       |  |
| Trim coils    | Control of magnetic flux surface quality                                             |       |  |

NCSX Winding Form Peer Review

### **NCSX Modular coil configuration**

- 18 coils, 3 field periods, 3 coil types
- Optimized for physics performance consistent with NBI access and engineering constraints.
- Coils wound with flexible cable conductor into cast-andmachined forms
- Coils pre-cooled to LN<sub>2</sub> temperature to allow high current density (14 kA/cm<sup>2</sup>)



#### **Continuous shell forms robust structure**

- Shell consists of individual modular coil forms that are bolted together
- Penetrations for access are provided wherever needed
- Thickness can be varied to optimize / reduce stresses
- Provides machine base for other components
- Stellarator symmetry preserved, at least one toroidal break per field period



#### Modular coil manufacturing sequence

- Continuous support for strength and accuracy of windings
- Single machined part provides winding form and assembly features
- Winding never removed from coil form



Rough casting

Features are machined

Conductor wound directly into structure Auxiliary support clamps are installed

NCSX Winding Form Peer Review

# NCSX Modular coils wound with flexible cable directly on coil structure



### **R&D** is planned to reduce risk

- Manufacturing studies (complete)
- Epoxy impregnation tests and conductor characterization
- Winding tests on full scale form
- Full scale prototype winding form (from two suppliers)
  - Contracts will be awarded soon
  - Details of winding form must be finalized, in conjunction with suppliers
- Full scale prototype coil

#### **Purpose of Review**

- Poloidal electrical break
  - Is poloidal electrical break feasible, and what are cost impacts?
- Cooling configuration:
  - Is approach to developing a cooling scheme reasonable?
  - Who should manufacture / install conduction layer, and how?
- Tolerances:
  - What is tolerance requirement?
  - Is tolerance budget / division reasonable?
- Other features to be added to modular coil winding form model
- Schedule Is near term plan sufficient to support procurement?

### **Poloidal break - Requirement**

- Time constant of shell must be less than 20 ms to allow fast flux penetration and to avoid persistent induced currents and resulting error fields
- Baseline design had > 50 ms time constant without breaks
- 3-D Analysis [Art Brooks] used to evaluate options for reducing time constant



#### **Poloidal break - proposal**

- Time constant of shell whittled down to < 20 ms</li>
  - Cut, insulate and bolt poloidal break prior to final winding path machining
  - Copper conducting layer insulated from casting, and segmented
  - All toroidal flanges except final field joints electrically insulated



#### **Poloidal break – Type A coil**



#### **Baseline option for connection of tee web across break**



#### **Poloidal break – What about stresses?**

- Structure analyzed for worst case magnetic loads, w/o breaks [ref. HM Fan]
- Shell structure well within limits
  - Max Sequivalent ~ 90 Mpa (13 ksi)
  - Regions near breaks ~ 40 MPa



(AVG) SEQV PowerGraphics EFACET=1 AVRES=Mat DMX = .550E-03 SMN =222096 SMX =.897E+08 222096 .102E+08 .201E+08 .300E+08 .400E+08 .499E+08 .599E+08 .698E+08 .798E+08 .897E+08



#### **Poloidal break – What about stresses?**

- "Tee" structure plotted separately, indicates general von Mises stress level < 50 Mpa in outboard region for worst case loading
- Net lateral loads on "tee" are primary concern, but these are lower in outboard region, go through several inflection points







Case: PDR coilset, modular coils only, 1.7-T



Case: CDR coilset, all coils, 2-T





Case: PDR coilset, modular coils only, 1.7-T



#### Lateral EM Load, Coil M3



#### **Poloidal break – issues**

- Distortion of casting when break is machined
- Damage to insulator from cutting fluids, cleaning, etc.
- Difficult to inspect break since both sides are at the same potential
- Discontinuity in winding support causes excessive local deformations and/or fault in insulation
- Bolts get loose over time, tee-to-tee connection not accessible
- Costs more to include break than to not include break

#### Poloidal break – cost impact ROM est.

| • | Design – Extra part models, drawings (3 mm)                              |             |
|---|--------------------------------------------------------------------------|-------------|
| • | Analysis – Complicated analysis of "Tee" connection                      | \$50k       |
| • | Fabrication of Winding form                                              | \$400k      |
|   | <ul> <li>Special tooling/fixtures (\$40k total)</li> </ul>               |             |
|   | <ul> <li>Machining of casting (\$13k/coil)</li> </ul>                    |             |
|   | <ul> <li>Extra parts (\$5k/coil)</li> </ul>                              |             |
|   | <ul> <li>Assembly, inspection (\$2k/coil)</li> </ul>                     |             |
| • | Winding and VPI operations                                               | \$36k       |
|   | <ul> <li>Additional work around "tee" connection, (\$2k/coil)</li> </ul> |             |
| • | Assembly inspection                                                      | <u>\$4k</u> |
| • | Total estimated cost                                                     | \$540k      |

#### **Poloidal break – recommendation**

Since:

- 1. We can't easily calculate the EM effects of not having the break, and this could affect operation significantly, and
- 2. We won't be able to add the break if later analysis says we have to have it, and
- **3**. We need to get on with the design and R&D, so:

#### Therefore: Keep the breaks

- 1. Refine the tee-to-tee connection, in conjunction with machining advice from vendors and a desire to avoid inaccessible bolts
- 2. Analyze the lateral loads and local stresses and deformations.
- **3.** Modify the models and drawings as needed

### **Thermal conducting layer**

- Modular coil winding cooled by conduction to copper layer on winding form
- Copper layer is insulated from winding form electrically and is divided into ~ 2 inch lengths to minimize eddy currents
- Copper layer is connected thermally to trace-cooled clamp
- Analysis indicates this approach works, with cool-down time between shots of about 15 minutes



#### Baseline cooling concept: Cu on tee plus cooled clamps



Thermal Conduction Layer Options:
1) Varnish SS, electroform with copper
2) Flame spray ceramic/copper, full thickness
3) Flame spray 0.010", then electroform
4) Copper strips, developed shapes

#### Alternate concept should be easier for Cu strip geometry, but requires deeper groove for tube, clamp still cooled



#### Alternate concept 2 moves tube away from corner for easier groove machining, clamp not actively cooled



# **Issues with Cu cladding options:**

#### • Flame spray

- Requires ceramic substrate for electrical insulation
- Must be machined after spray or applied with robot
- Surface must be hand worked for decent finish
- Thermal conductivity may not be very good
- Difficult to do in-house
- Electro-form (plating)
  - Must be shipped to specialized vendor, who has equipment
  - Slow, about 1 mil per hour max
  - Must be machined, possibly twice, to retain surface tolerance
  - Probably not compatible with insulating break due to immersion in copper sulphate solution
- Mechanical bonding of copper strips
  - Very difficult to achieve proper shape if formed from single sheet
  - Narrow, simple shapes leave large gaps between pieces
  - Bonding process not defined yet
  - But, we can do it in house!

# **Cu Cladding Recommendation:**

**1.** Remove copper cladding from winding form task

- 2. Apply copper strips at PPPL prior to winding
  - Write software to make developed-shape patterns
  - Cut patterns with water jet cutter from dxf files
  - Stack of 3 or 4 0.02 inch sheets should make forming easier
  - Bonding can be done with hot melt adhesive
  - Inspection via Faro arm and ohm meter
  - Re-work accommodated by hot melt adhesive
  - Process can be tried very soon on partial full scale "tee" castings recently procured by PPPL (due end of Jan)
- 3. Internal R&D Program will be conducted over next three months to develop process

### **Modular coil winding tolerances**

- Stellarator coils must be very accurate to produce flux surfaces of sufficient quality
- Errors in winding geometry can produce islands, which "short circuit confinement" [A. Reiman, NCSX CDR]



boundary PIES calculation with healed coils. Sum of effective island widths < 1%. **PIES** calculation with original coils. Continues to deteriorate as iteration proceeds.

#### Winding accuracy requirement:

- "The toroidal flux in island regions due to fabrication errors, magnetic materials, or eddy currents shall not exceed 10% of the total toroidal flux in the plasma." [ref. GRD, Rev. F]
- Assumed accuracy requirement: Installed coil winding center within 1.5 mm of theoretical (3 mm T.P.)
- Effect of variations and combinations of winding errors studied systematically by A. Brooks
  - Modular coil distortions and position errors
  - **PF coil errors**
  - **TF coil errors**

#### Winding accuracy study - [ref Art Brooks]

- Impact of Random Tolerance Stack up for Different Tolerances in Modular, TF and PF
  - Using Fourier Representation (alla CDR)
  - Local Tolerance varies with Coil-to-Plasma Separation
- Impact of short "wavelet" type deformation on Modular Coils
  - Island Size vs Coil-to-Plasma Separation
  - In-Plane and Out-of-Plane Deformations
  - Modular Coils 1,2 &3 Considered Individually
- Impact of broad deformations of Modular Coils
  - Island Size vs Closest Coil-to-Plasma Separation
  - Out-of-Plane Deformations of Modular Coil 1 Only

#### Winding accuracy study - [ref Art Brooks]



#### Winding accuracy study - [ref Art Brooks]

- Impact of Random Tolerance Stack up for Different Tolerances in Modular, TF and PF
  - Softening Tolerance on TF & PF from 1.5 to 3.0 mm appears acceptable
  - Softening Overall Tolerance on Modulars not acceptable.
  - Softening Modular Tolerance based on plasma separation (1.5mm near plasma to 3.0 far from plasma) has minimal impact
- Impact of short "wavelet" type deformation on Modular Coils
  - Coil-to-Plasma Separation less than 30 cm has strongest impact on island size
  - In-plane and Out-of-Plane deformations do not differ significantly
- Impact of broad deformations of Modular Coils
  - Increasing Length of deformation does not Increase Max Island Size

### Winding form tolerance budget

# • Tolerances must be divided among various elements and operations:

| Element                          | Tolerance<br>budget          | Comment                                                                    |
|----------------------------------|------------------------------|----------------------------------------------------------------------------|
| Winding form                     | +/- 0.01 in.                 | Baseline on drawing                                                        |
| Copper cladding                  | TBD                          | Could be used to improve<br>winding form tolerance if<br>shims are allowed |
| Insulated conductor size         | +/- 0.01 in.                 | Based on NEEWC input                                                       |
| VPI process                      | TBD                          | Assumed to be small, but not known                                         |
| Assembly of coil in field period | TBD                          | Adjusted to best fit, coil-to-coil with custom shims                       |
| Assembly of field periods        | TBD                          | Adjusted to best fit with<br>custom shims                                  |
| Total tolerance                  | +/- 0.06 in.<br>(+/- 1.5 mm) | Minimum value, may be relaxed according to location around winding         |



#### **Tolerance Recommendations**

- Divide tolerance equally between
  - winding form / copper conduction layer
  - Conductor winding packs / VPI, and
  - Assembly
- Winding form and Cu would thus have a total of +/-0.02 inches from theoretical profile, or 0.04 inch bilateral profile tolerance relative to component coordinate system
- Leave prototype drawing tolerance as-is pending further discussions with vendors

### **Options for tolerance recovery**

- Prior to winding:
  - Custom-shim copper conduction layer to improve winding surface accuracy, including inferred current center compensation
- During winding:
  - Custom-shim between winding layers with additional fiberglass sheets to move winding pack center relative to winding form
- After winding and potting
  - Measure completed coil (maybe using CT scan provides accurate method of measuring "as-built" winding center of each coil)
  - Develop optimized positions of "as-built" coils in assembled array
- After assembly
  - Measure flux surface quality
  - Use error field correction coils

#### **Other features for winding forms**

- VPI details (sprues, groove for vacuum seal, etc.)
- Current feed / lead details
- Poloidal break details at "tee" connection
- Modified cooling details
- Measuring and handling fixture interface features

#### **Current feeds / crossovers**

- Crossovers and "joggles" arranged for minimum field errors
- Baseline concept was to route coax leads next to winding packs
- New proposal routes leads out between winding packs,
  - requires slightly different features on winding form





Possible lead arrangement showing opposite dipoles from crossovers

#### "Potting" details

- Sprues may be needed for introducing epoxy into winding
  - Bore of coil
  - Outside of coil (preferred option)
- Grooves for aiding vacuum seal are also desired



### **Summary**

- Poloidal break appears feasible, but "tee" connection details are not finalized
- Copper conduction layer to be installed at PPPL in the form of copper strips
- 0.020 inches of total tolerance budgeted for winding form (0.010) plus copper conduction layer
- Other features need to be added to coil forms