
NCSX Trim Coil Final Design Review

NCSX

Richard Upcavage Joe Rushinski Art Brooks Mike Kalish

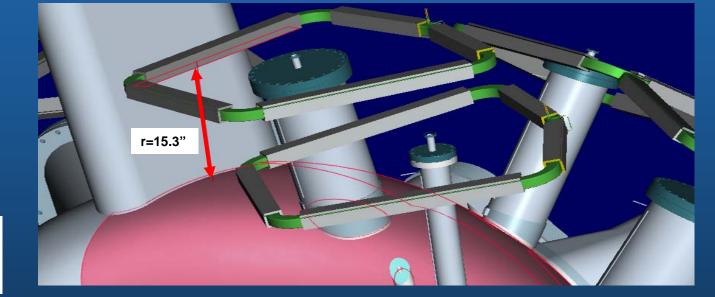
Charge

- 1. Are all required analyses complete and formally checked and adequate to establish that the proposed design is feasible and meets established design criteria?
- 2. Are the drawings and documentation adequate to support the procurement and/ or manufacturing process, installation, and ready for sign-off?
- 3. Is the plan for installation of the trim coils compatible with the machine assembly plans?
- 4. Is the Product Specification (CSPEC) complete and satisfactory? Are the interfaces adequately defined?
- 5. Is the Work Planning form current, and have the applicable requirements been satisfied?
- 6. Have the chits from the PDR been resolved?
- 7. Are updated cost and schedule estimates available?

Outline

- Requirements
- Design
- **R&D**
- Analysis
- Interfaces
- PDR Chit Resolution
- Cost and Schedule
- Summary

Summary- Requirements

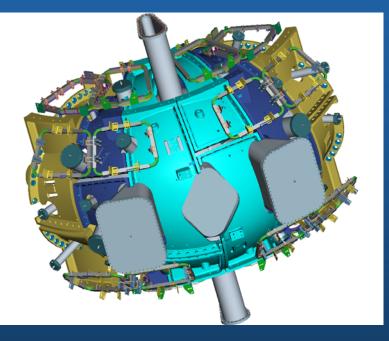

- Meet Requirements when subjected to GRD reference scenarios
- Island Suppression 10%
 - 20 kAmp Turns
 - 48 Coil Configuration
- Thermal Excursions and Stress within limits
 - 2 second pulse every 15 minutes
 - 167 amps
- Withstand Operating Voltages
 - Max Operating Voltage 1.0kV
 - Design Standoff Voltage to Ground of 6.7 kV
 - Design Standoff Voltage Turn to Turn of 1.0 kV
- Winding Tolerances
 - Installed tolerance +/-12mm
 - Fabrication tolerance +/- 6mm
 - Location measured to within 2mm
- Achievable Response Time of 20ms
- Installation at Start of Station 5

Magnetic Permeability Requirement

NCSX

Magnetic
 Permeability
 Required is
 1.02 without
 further relief

$$6 \cdot 10^{-5} > \frac{\left(\mu_r - 1\right) \cdot V_{\mu}}{r_{\mu}^{3}}$$



$$\frac{1}{50000} \cdot \frac{\left(3 \cdot r_{\mu}^{3} + 50000 \, V_{\mu}\right)}{V_{\mu}} = 1.005$$


required magnetic permeability not to be less than 1.02

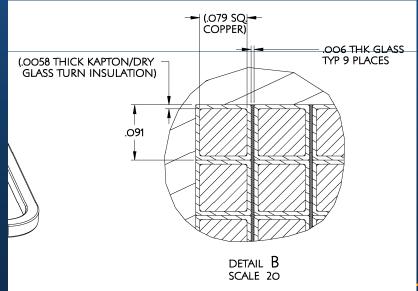
Final Trim Coil Configuration

NCSX

- 48 Coils
- Only two coil types
- All Coils Planar
- Top bottom symmetric half period patterns

48 Coil Trim Coil Configuration Meets Design Objective with Margin

Design Point < 10% Islands < 20 kA-T


NCSX

		Using SVD Solution		Using NLP So	Using NLP Solution	
	Total Number	Total Island		Total Island		
Trim Coil Configuration	Coils	Size	Max Current	Size	Max Current	
		%Total Flux	kA-T	%Total Flux	kA-T	
Original 36 coils, 24 circuits	36	4.42	8.34	3.35	10.00	
Original with 12 Midplane Coils	48	4.41	7.85	2.55	10.00	
All Inner/Outer Coils Only (as Modified)	54	4.30	9.96	2.87	10.00	
All Inner/Outer Coils Only (as Modified)	48	4.29	11.36			
(but without Outer AA)		6.95	10.00		 	
All Inner/Outer & Midplane Coils	66	4.26	9.21	2.17	10.00	
All Inner/Outer & Midplane Coils	60	4.25	9.56			
(but without Outer AA)					 	
All Inner/Outer Coils (port12 split)	60	4.47	10.00	2.89	10.00	
(with Outer AA Coils)		4.21	10.30			
All Inner/Outer Coils (port12 split)	54	7.98	10.00	3.00	10.00	
(without Outer AA Coils)		4.18	11.88			
All Inner/Outer Coils (port12 split)	48	8.49	10.00	3.12	10.00	
(without Outer AA and CC Coils)		4.06	12.25			
Above Plus Wings Distorted +40 mils		-	-	3.88	10.00	
(Stellarator Symmetric) -40 mils		-	-	3.88	10.00	
Above Plus Wings Distorted +40 mils (1 HP Only, Non Stellarator Sym)		-	-	3.25	10.00	

7

Winding Pack Insulation Scheme

- Kapton Tape applied directly to conductor to enhance turn to turn dielectric standoff
- One half lap layer of glass to allow for epoxy impregnation
- Additional .006" thk by 1" wide glass between layers to wick epoxy

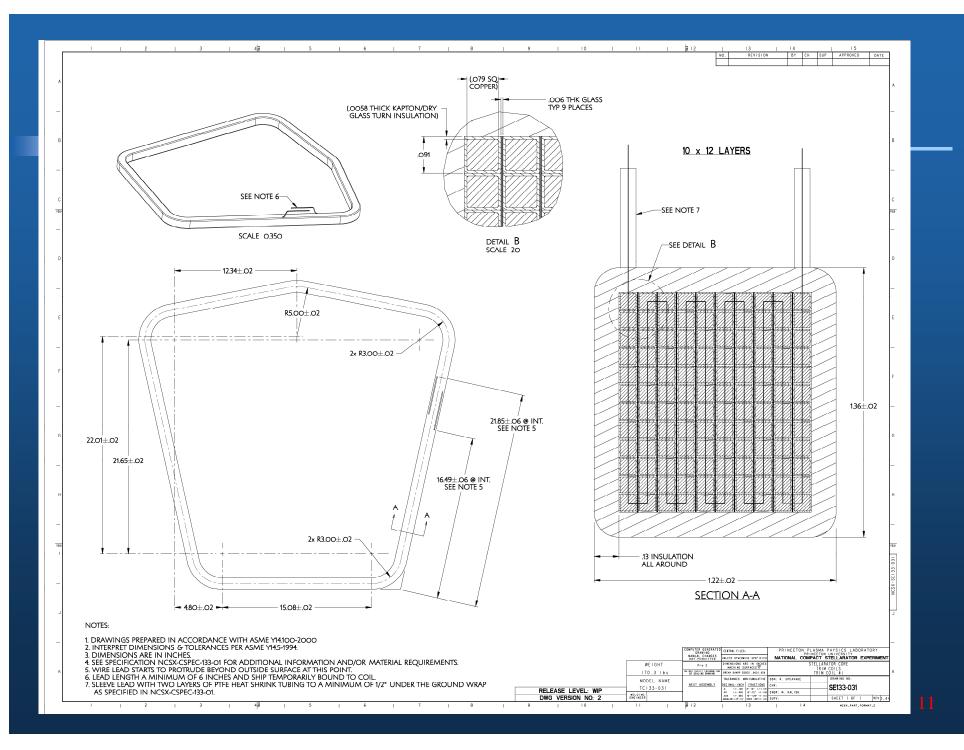
	Trim Ground Wrap					
l	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
7	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
/		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
7	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
			0.12	Inches	10.8	K۷
	Trim Turn to Turn					
	1/2 Lap Layer Dry Glass	Glass	0.0012		0.108	
		Glass	0.0012		0.108	
		Kapton	0.0017		7.7	
ir		Kapton	0.0017			
			0.0058	Inches	7.9	KV

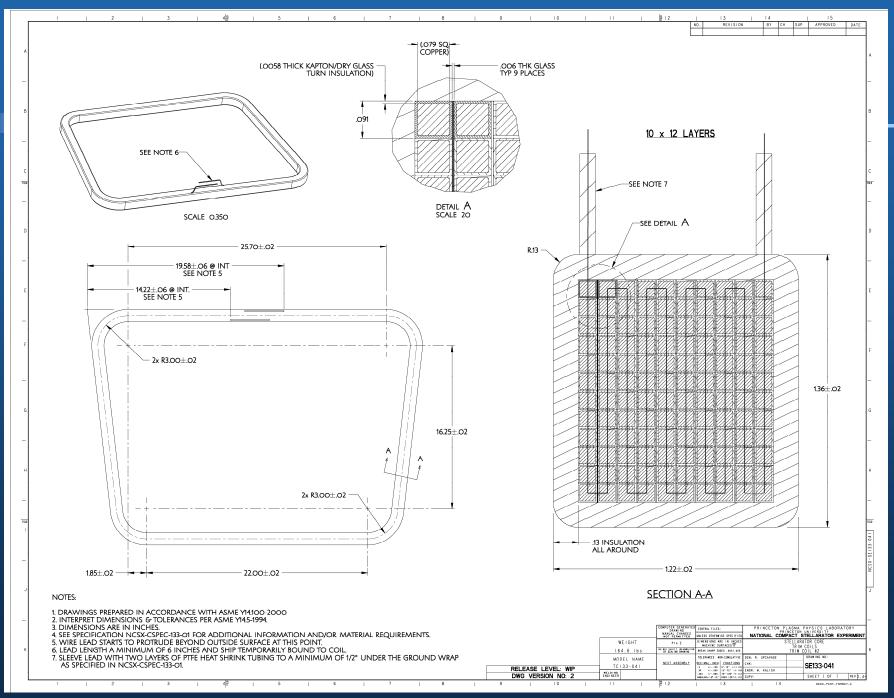
Turn To Turn Voltage Standoff Requirement

NC

NCSX_

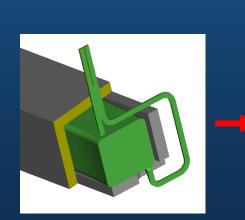
 Calculated Turn to Turn Break Down Voltage exceeds requirement by a factor of 16

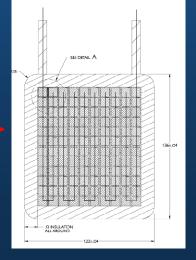

NCSX Coil Voltage Standoff Require	ements Turn to	o Turn
3/6/2008		
Operating Voltage (KV)	per coil for coils in series	1.00
For Turn to Turn Voltage Divide Total Voltage By #Layers-1	note: = #coils x #Boundaries	10.00
Turn to Turn (KV)		0.10
Design Requirement for Volatge Standoff (Turn to Turn x10) (KV)		1.00
Turn to Turn Glass Thickness		0.005
Calculated Coil Turn to Turn Long Term Break Down (90V/mil) (KV)		0.86
Calculated Kapton Standoff (KV)		15.40
Calculated Total Turn to Turn Break Down Voltage (KV)		16.26
Safety Factor (Calculated Break Down Voltage / Design Requirement for Voltage Standoff)		16.3

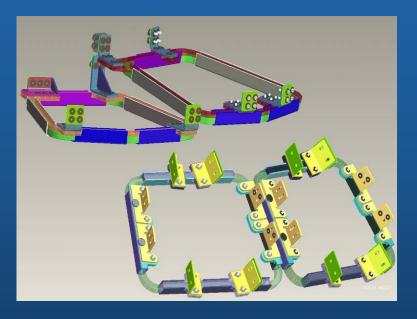

Ground Plane Voltage Standoff Requirement

NCSX

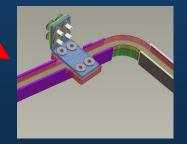
Calculated Break
 Down Voltage to
 Ground exceeds
 design requirement
 by a factor of 2.8

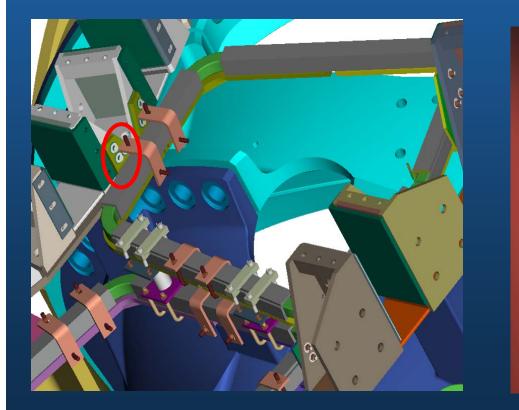

NCSX Coil Voltage Standoff Requirements Ground Plane					
Max Operating Voltage (KV)		1.00			
Maintenance Field Test Voltage (KV)	(Operating Volatage x 2) + 1	3.00			
Manufacturing Test Voltage (KV)	Maintenance Test Voltage x 1.5	4.50			
Design Volatge Standoff Requirement (KV)	Manufacturing Test Voltage x 1.5	6.75			
Calculated Coil Turn Long Term Break Down (90V/mil+Kapton)		8.13			
Calculated Ground Wrap Long Term Break Down		10.8			
Calculated Standoff to Ground KV	Ground + Turn Insulation	18.9			
Safety Factor to GND (Standoff to Ground / Design Voltage Standoff Requirement)		2.8			

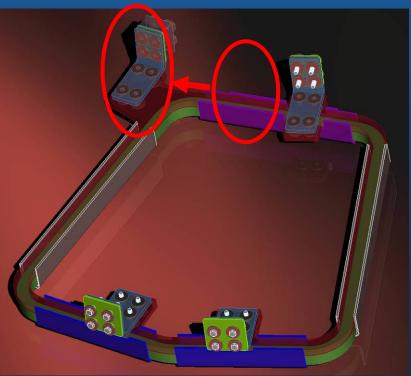




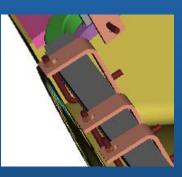
NCSX

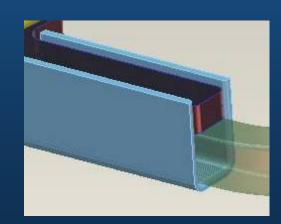

- As the result of PDR Chits and further fabrication assembly reviews design improvements were implemented
 - 11x11 build changed to 10x12 so leads both protrude from top
 - Interface brackets bolted to ³/₄" plate instead of welded

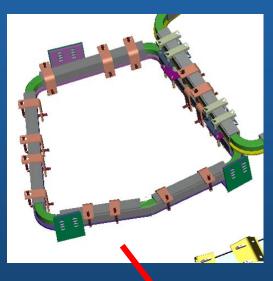


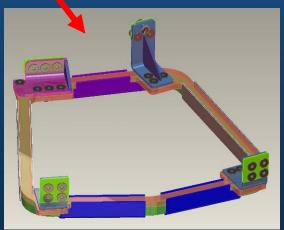


NCSX

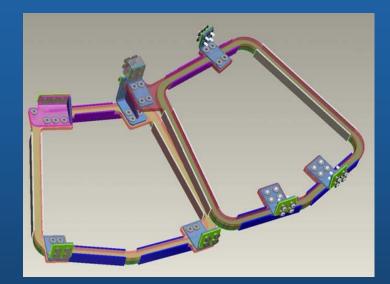

• Mounting points spread out to resist moment and lower stresses

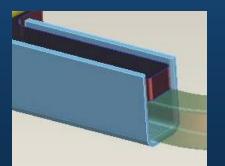


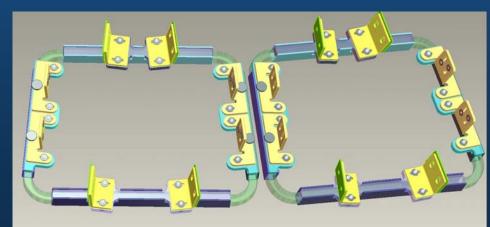

NCSX



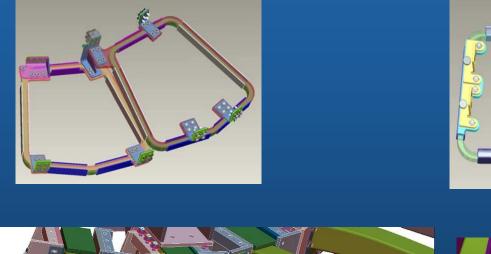
• Diagonal clamps replaced with welded U Channel

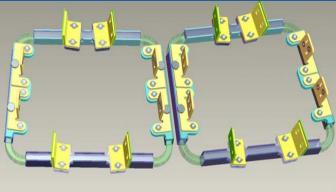


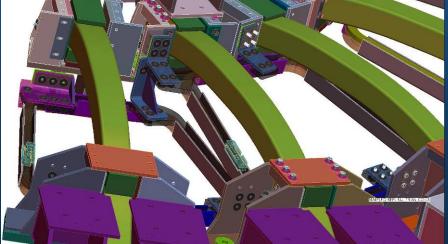


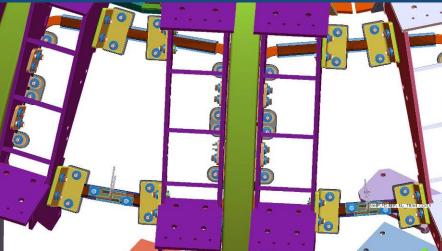


NCSX

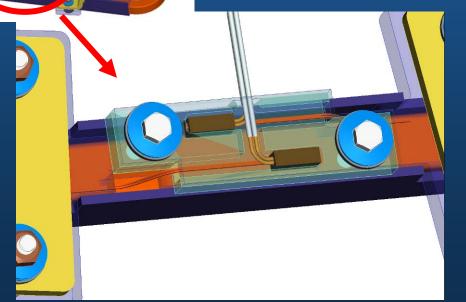

- Coil Assemblies assembled off line and then bolted to TF and PF Coils supports
- Brackets offer 3 degrees of adjustment
- Custom shimming may be required to correct for angle in one plane only
- With all frames accurately machined a representative aluminum template can be used to pre-fab shims if required





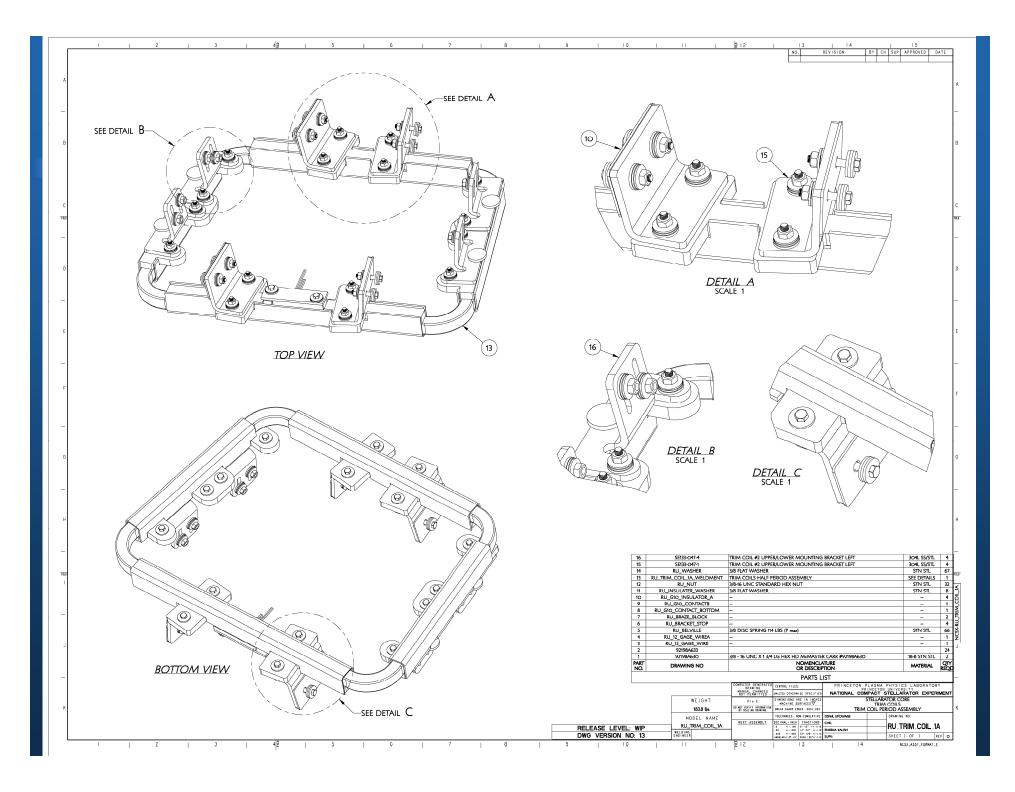


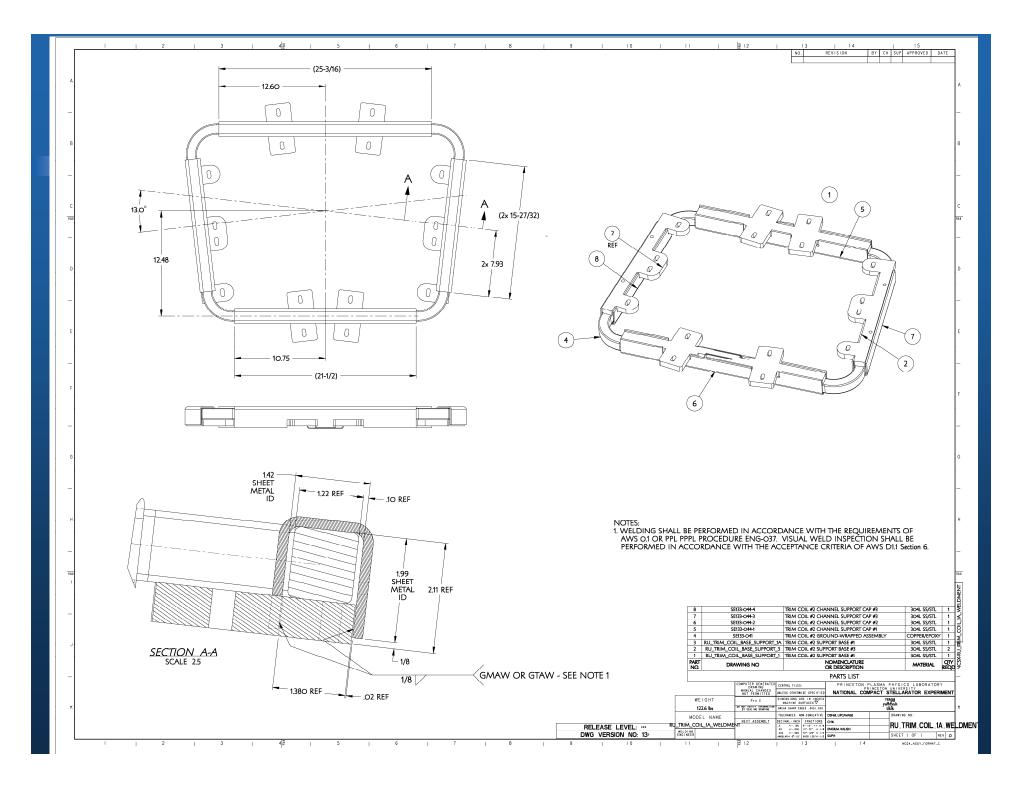
NCSX

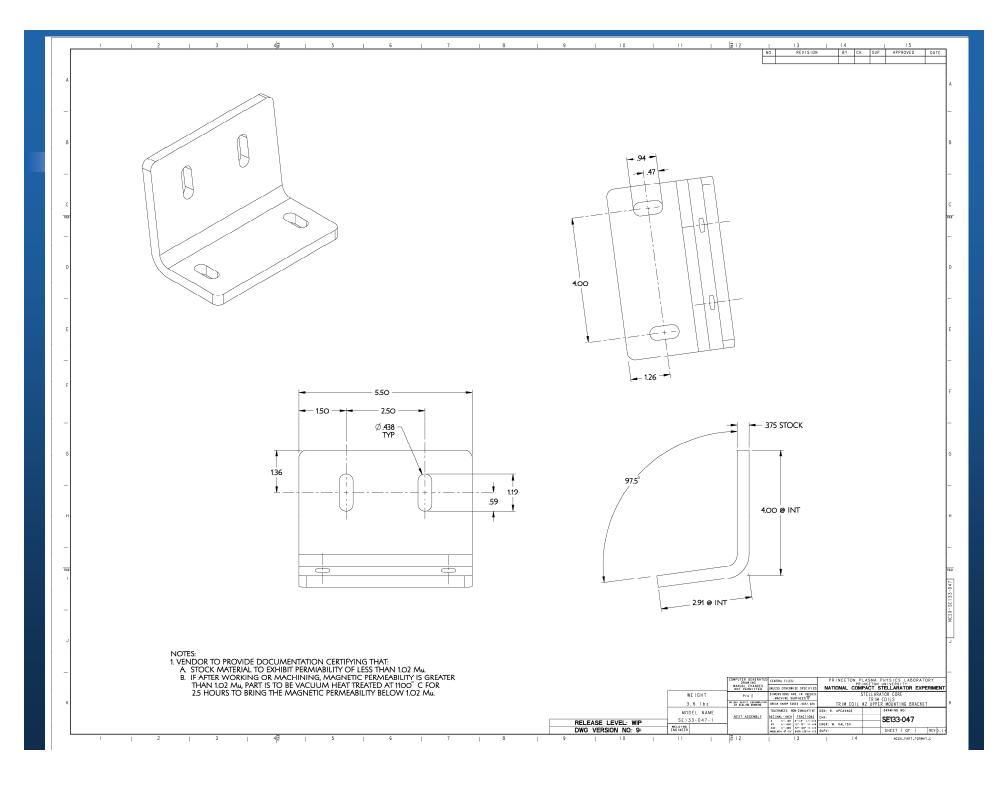


Coil Leads Supports

NCSX


- Leads protrude from a notch in the ³/₄ inch support plate
- Leads are sleeved with Teflon for improved dielectric standoff
- Leads and Trim Coil cables are brazed into a copper transition block
- G11 blocks strain relieve leads and cable transition



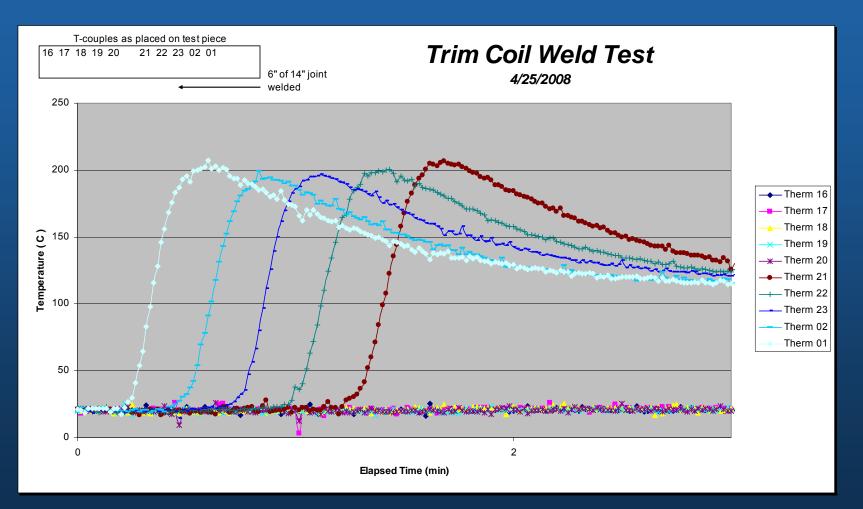


Trim Coil Assembly Drawings

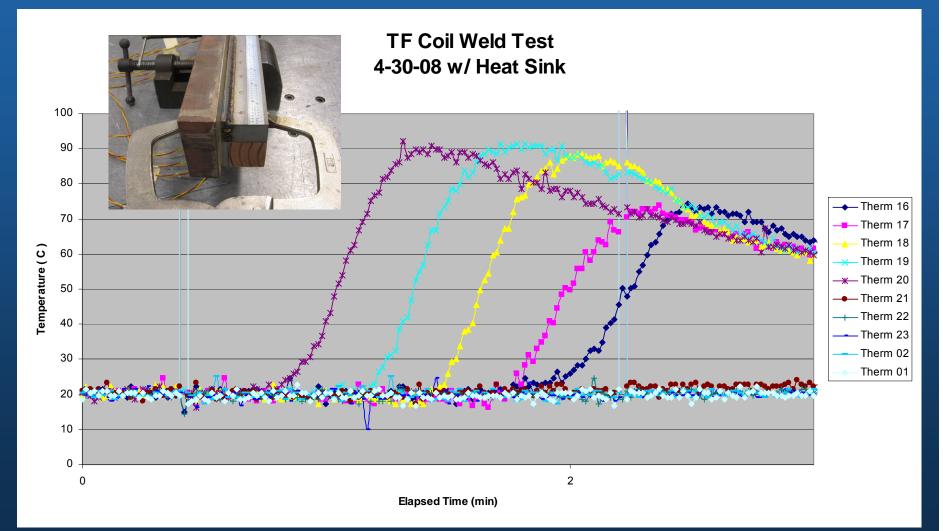
Structure - Magnetic Permeability

- Estimate includes A286 non magnetic hardware
- Bellville washers are Inconel
- Individual Mounting Brackets Inconel
- U Channel and Base (¾ inch) Support Plates are 316 SS
 - Vendor to certify that stock material exhibited magnetic permeability of less than 1.02 Mu
 - If after working or machining part has magnetic permeability greater than 1.02 Mu, part is to be vacuum heat treated at 1100 C for 2.5hrs to bring the magnetic permeability below 1.02Mu

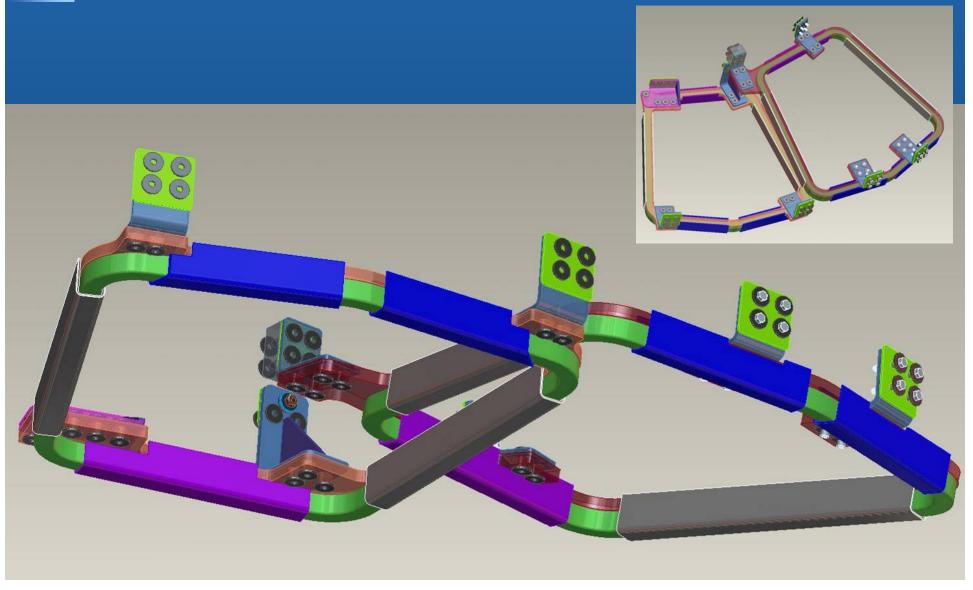
R&D Weld Testing Setup

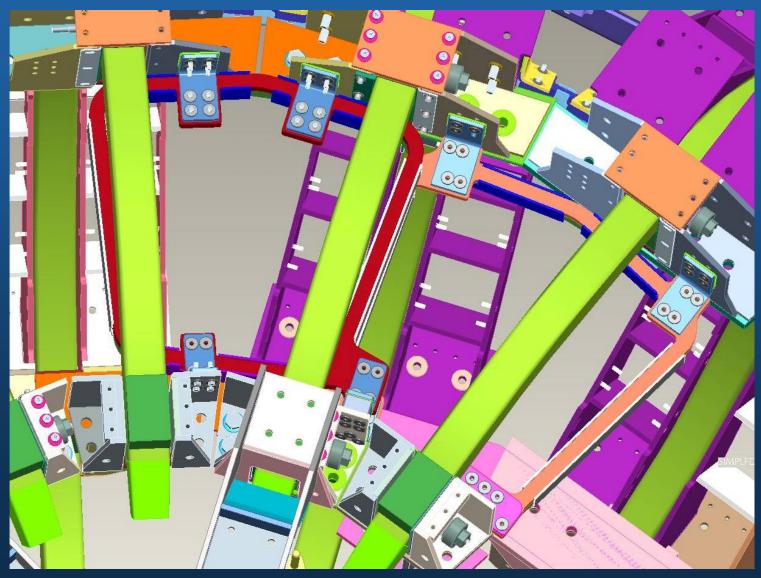

NCSX

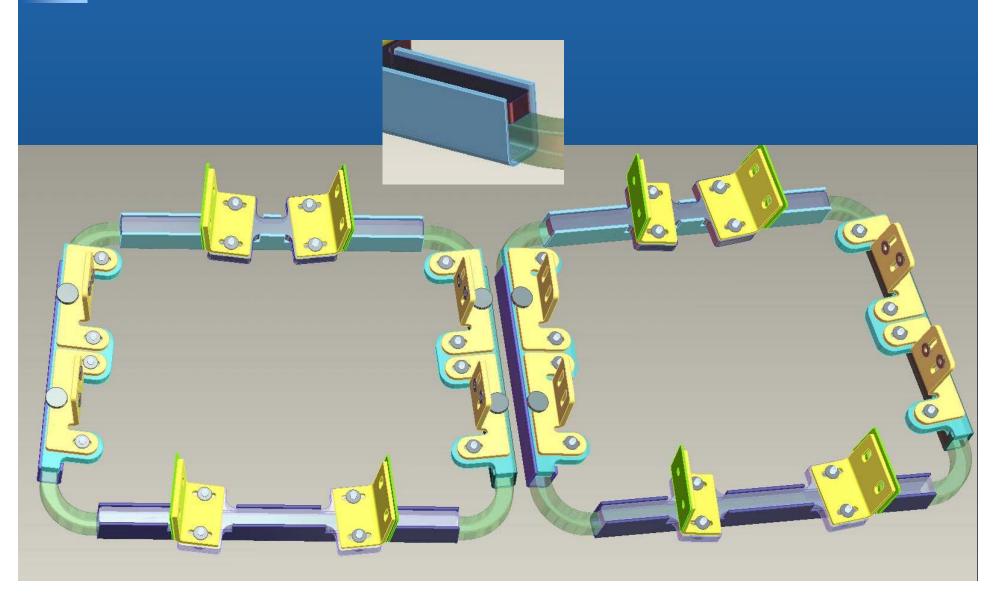
- Testing to assure U Channel welding did not exceed 120C at coil surface
- Wooden Block assembled to mockup of Coil Structure
- Ten thermocouples record temperature
- Method and results logged for assembly procedure

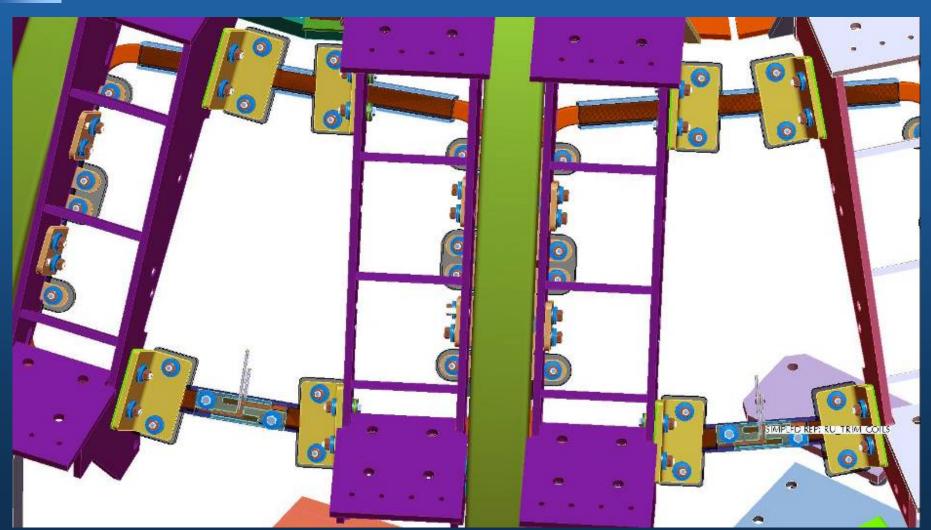


R&D Weld Testing- No Heat Sink

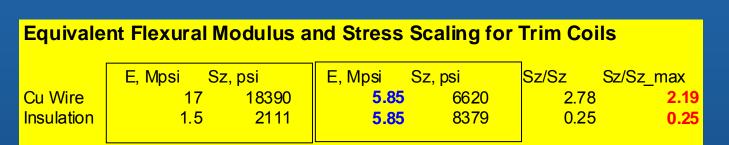

NCSX



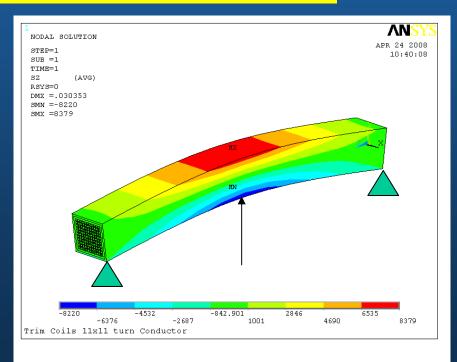

R&D Weld Testing- With Heat Sink


NCSX Trim Coil FDR 5/6/08

NCSX

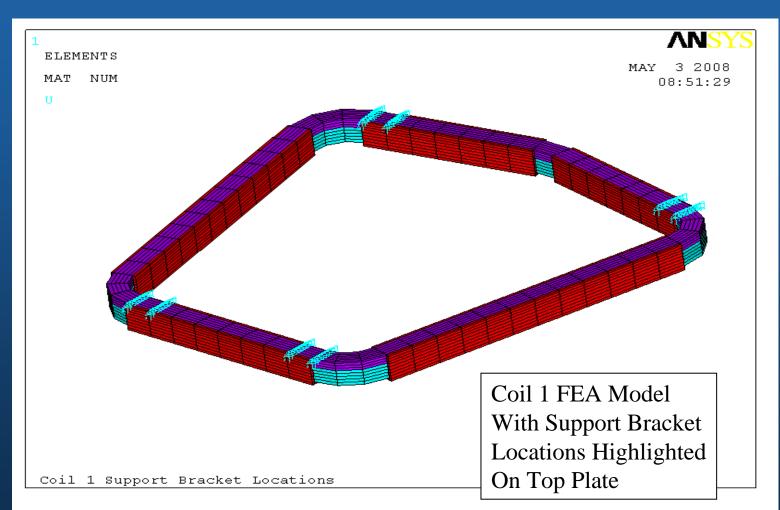

Trim Coil Stress Analysis – Overview

NCSX_

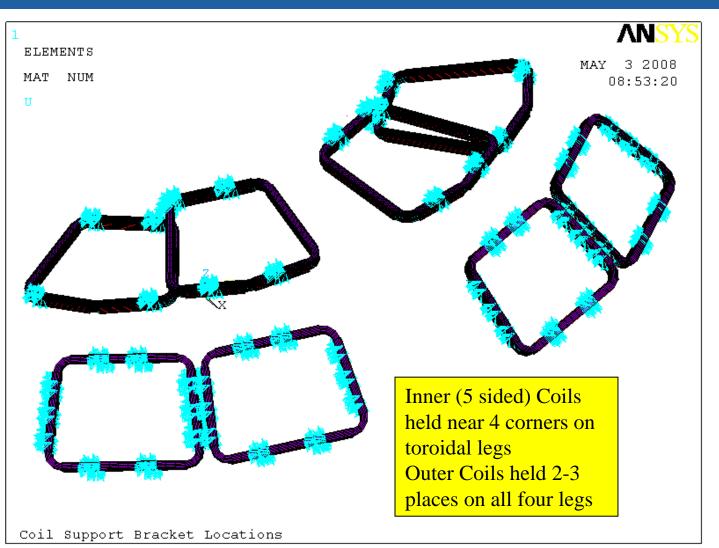

- Local Model of Conductor Copper/Insulation to establish equivalent flexural properties and stress scale factors
- Finite Element Modeling Features
- Force Scan of Many Load Cases
 - Establish running load of 80#/in as worse case
- Summary Stress Table
- ANSYS Detailed Stress Plots
- Summary of additional load cases
- Bolting and Brackets

Conductor Modeled with Equivalent Properties calculated from Flexural Modulus Simulation

NCSX



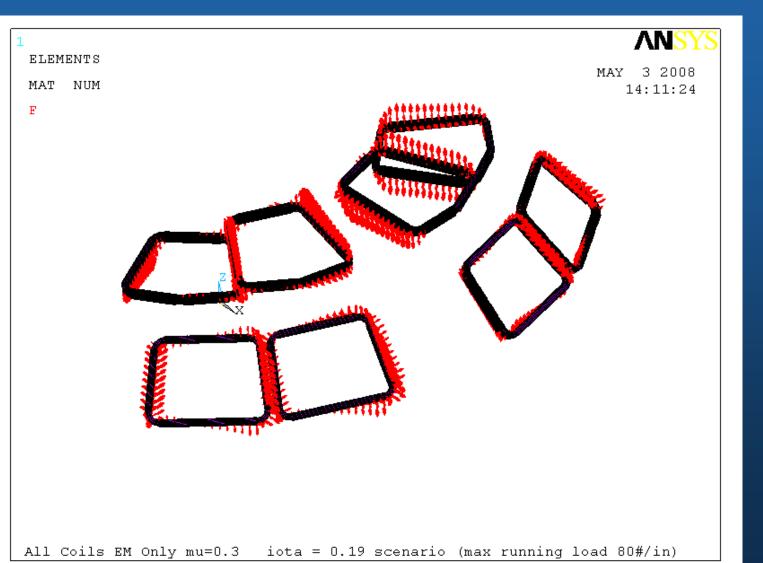
- Detailed Model of 120 Turn Coil
- Distinct Elements for Copper and Glass Insulation
- Equivalent properties used for large composite model
- Results from composite model scaled to determine maximum stresses



FEA Coil Model

NCSX

FEA Model – All Coils


Load Cases Investigated for EM Forces

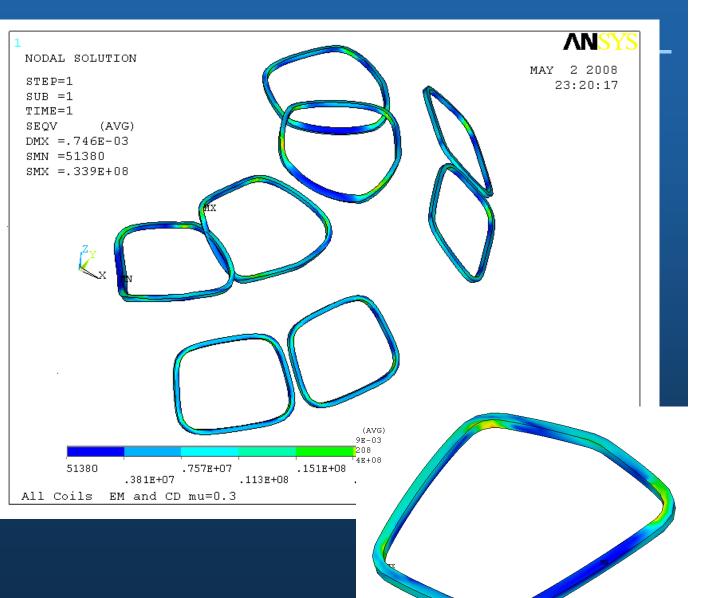
NCSX_

- All GRD Load Cases at Multiple (5) time points
- Additional Flexibility Cases
 Identified by Physics
 - lota Scan (2)
 - Shear Scan (2)
- Max Running Loads Found
 - 80 lb/in Inner Coils
 - 60 lb/in Outer Coils
- Subsequent analysis is run for the worst load case iota .19 case

- 2T High Beta
- 1.7T High beta
- 1.2T Long Pulse
- 1.7T Ohmic
- 320KA Ohmic
- 0.5 T TF
- Iota/Shear Scan
 - iota -0.10
 - iota 0.19 (High TF Field)
 - iota +0.20
 - iota 0.65

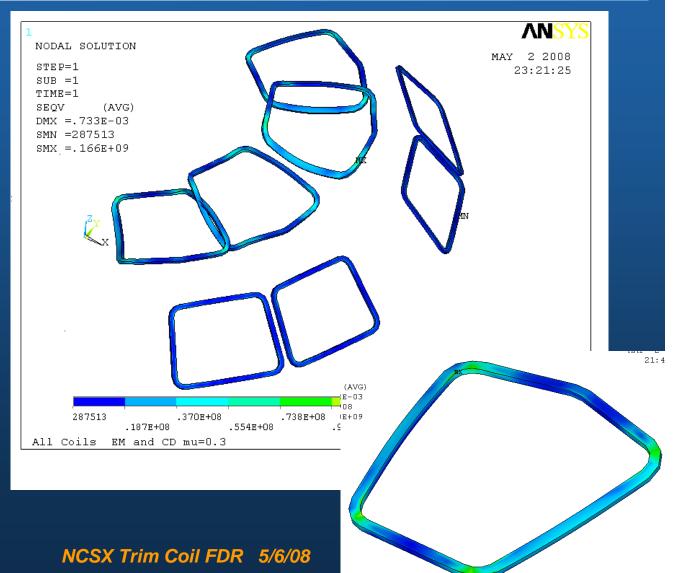
Iota = 0.19 Scenario Force Distribution

Stress Result Summary (nodal peak stresses)


NCSX

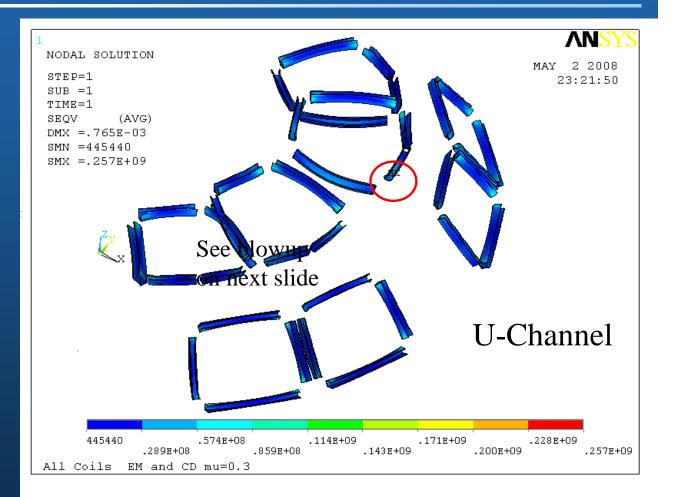
-							
		Max Von Mises S					
		Cond Composite	Copper	Insulation Plate		U Channe	
No Friction	mu=0.0						
Coil1	CD+EM	32.5	71.5	8.1	113.0	186.0	Мра
		4.6	10.2	1.2	16.1	26.6	ksi
	EM Only	19.9	43.8	5.0	44.2	34.1	Мра
		2.8	6.3	0.7	6.3	4.9	ksi
	CD Only	25.0	55.0	6.3	106.0	198.0	Мра
		3.6	7.9	0.9	15.1	28.3	ksi
Friction	mu=0.3						
Coil1	CD+EM	27.4	60.3	6.9	120.0	196.0	Мра
		3.9	8.6	1.0	17.1	28.0	ksi
	EM Only	23.1	50.8	5.8	72.7	54.9	Мра
		3.3	7.3	0.8	10.4	7.8	ksi
	CD Only	24.5	53.9	6.1	96.3	174.0	Мра
		3.5	7.7	0.9	13.8	24.9	ksi
Friction	mu=0.3						
All Coils	CD+EM	33.9	74.6	8.5	166.0	257.0	Мра
		4.8	10.7	1.2	23.7	36.7	ksi
	EM Only	22.9	50.4	5.7	79.2	116.0	Мра
		3.3	7.2	0.8	11.3	16.6	ksi
	CD Only	25.5	56.1	6.4	117.0	188.0	Мра
		3.6	8.0	0.9	16.7	26.9	ksi

Conductor Stress Result

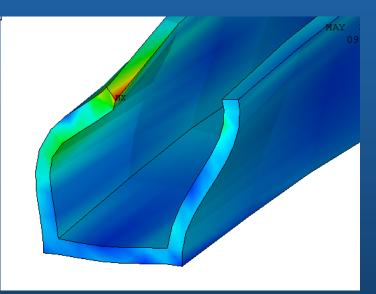

NCSX

- EM only= 7.3Ksi
- EM only allowable= 1.5Sm=10.3ksi (at 77K for local bending)
- Cool Down only= 8ksi
- CD only allowable 3xSm=20.7ksi (for secondary thermal stress + primary)
- CD+EM= 10.7ksi
- Allowable 3xSm=20.7ksi (for secondary thermal stress + primary)

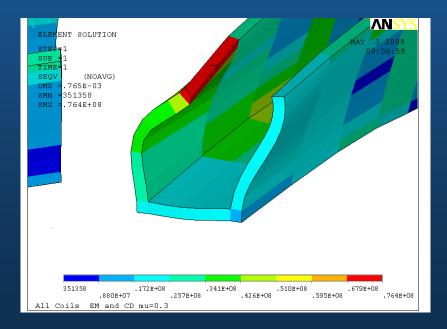
3/4" Support Plate Stress Result


- EM only= 11.3ksi
- EM only allowable= Sm=20.0ksi (Primary Member Stress)
- Cool Down only= 16.7ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)
- CD+EM= 23.7ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)

U Channel Stress Result


NCSX

- EM only= **16.6** ksi
- Allowable= 1.5Sm=35.0ksi
 (Primary Member Stress)
- Cool Down only= 26.9ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)
- CD+EM= 36.7ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)
- Element Average Stress is only 30% of Max Stress Result 36.7ksi→10.9ksi

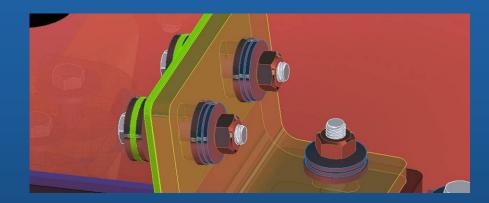


U Channel: EM Loads + Cool Down

NCSX

Element Average Stress Much Lower 10.9 ksi Peak Node Stress at Weld In Coil 3 U-Channel 36.7 ksi

Comparison of EM Scenarios

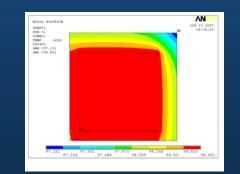

- Original run with iota=.19 case
- Additional two load cases Run
- .5T TF Case some stresses marginally higher but within allowables Note that GRD does not include Trim Coil current for .5T TF but case run with full 20 Kamp turns
- 2T HB stress results lower than iota=.19

Friction	mu=0.3	Max Von Mises St					
All Coils	EM Only	Cond Composite	Copper	Insulation Plate		U Channe	
iota=0.19		22.9	50.4	5.7	79.2	116.0	Мра
		3.3	7.2	0.8	11.3	16.6	ksi
0.5T TF		24.1	53.0	6.0	103.0	152.0	Мра
		3.4	7.6	0.9	14.7	21.7	ksi
2T HB t=0.1	97s	13.4	29.5	3.4	46.3	38.9	Мра
		1.9	4.2	0.5	6.6	5.6	ksi

Bolts and Brackets

NCSX

- Bracket must resist in friction a lateral load of 2038lbf
- Two series (cupped) Bellville washers provide preload of 5800 lbs tensile preload per bolt
- Three bolts provides 3480lbf to resist lateral force for worst case running load of 80lbf
- Bracket Stress for worst case running load
 Max Stress = 52 ksi bending
 Deflection = .009"
- Inconel required for support brackets
 Allowable Stress Bending at LN2 temp = 1.5Sm = 140Ksi



bolt size	0.375			
threads/in.	16.000			
Pitch diameter	0.334			
tensile area	0.077	Eq. 2.1 "An	Intro. to th	
Tensile Yield strength	189000	A286 Stud a	as shipped	
Ultimate tensile str.	211000	A286 Stud a	as shipped	
Tension allowable	126000	2/3 Yield for Stud		
Max Axial load/bolt	9764	At tension a	llowable	
Applied Axial load/bolt	5800			
coeff. Of frict.	0.200			
Frict. Load/bolt	1160			
Total no. bolts	3			
total frict. Load	3480			
lateral load on box	2038			
Friction F.S.	1.7			
calc torque to get axial load using				
simple formula	32			

Coil Cooling Analysis

Comfortable Design Margins With Convection Cooling

- Requirement
 - 2 second pulse every 15 minutes
 - 20 Kamp Turns
 - Equivalent average power of 27 watts
- For 120 Turn Coil With 2mm Conductor (10X20)
 - Convection cooling adequate
 - Temperature increase per pulse is only approx.= 2.6 C
 - Equilibrium reached with temperature rise approx.= 9.0C
- Margin Available
 - Doubling the current to 40 amp turns
 - Equivalent Average Power of 107 watts
 - Temperature increase per pulse is only approx.= 10.3 C
 - Equilibrium reached with temp. rise approx.= 35C

Interfaces

- Modular Coils, PF and TF Coils
 - EM loads from the Modular, PF and TF coils were calculated and incorporated into the stress analysis
- Coil Support Structure
 - Interfaces defined by Pro-E Model
- Liquid Nitrogen System
 - Coils are convection cooled
 - No pressurized LN2 flow required

Interfaces

NCSX

• Electrical Leads

- Individual leads will be provided capable of handling an equivalent RMS current of 8 amps (165 amps for 2 seconds every 15 minutes)
- Interfacing Cables will be 4 twisted 12 awg wires brazed into the lead block on the coil
- Coil Protection System and I&C
 - One thermocouple will be provided on each Trim Coil to be used as necessary to monitor temperatures during operation
- Magnetic Diagnostic Loops
 - No diagnostic loops will be provided on the Trim Coils

Interfaces

NCSX

Assembly

- Coils locations will be measured after assembly at a minimum of four points
- Electrical Grounding
 - Trim Coils will not have a ground plane but will provide a single point ground wire for each of the isolated inner coils
 - One ground wires for each rail of the outer coils that bridges the modular coil joint will be provided
 - The two rails on the outer coils that do not bridge a joint will not be isolated from the modular coils

PDR Chit Resolution

		Review Board		Respon
#	Chit/Audit Finding [Originator]	Recommendation	Project Disposition	sibility
1	The Project needs to define the range of operating scenarios required and final analysis for trim coils needs to be consistent with this. Heitzenroeder	Concur. Expected operating scenarios to be documented in the GRD	Complete - Art Brooks along with Mike Z evaluated additional TF Coil operating scenerios included in analysis. we are now using four flexibility equilibria recently provided by Mike Z. in our design work. "These are used to implement existing GRD requirements (3.2.1.5.3.4). I suggest we document the coil currents for any equilibria that we use as design requirements in the Technical Data section of the GRD (Appendix A)" - Hutch	Neilson
2	Per SRD 3.1.2.11 (d); WBS4 is only responsible to feed power to the coils. Ramakrishnan		"The GRD does not require diagnostic loops on all coils. The SRD, paragraph 3.1.2.10 is correct and there is no conflict." - Hutch	Neilson
3	Per SRD 3.1.2.11 (e) Grounding; Please note that this is a floating system. Ground fault protection will be provided. Coil casings have to be preferablymade continuous so that external ground leads can be brought out in a couple of places. Ramakrishnan	Concur. (1) SRD must be updated to include Trim Coil grounding details. (2) Drawings need to show ground connections.	Complete- Coil cases Isolated and floating and grounded in one location each with a wire. Out board individual legs of coils which do not bridge field period segments are not isolated from the modular coil cases	Kalish

	1 3 3	Concur. This interface requirement should be defined in the Trim Coil SRD.	Complete- Project has defined requirement to measure after installation. It is in approved SRD	Kalish
5	We should hold a peer review on upgrade mid-plane trim coil locations and supports. Zarnstorff		Will Follow FDR for Trim Coils "I agree that we should lay out where the upgrade trim coils are going to go and identify whatever space and mounting features are needed. Then have a peer review to make decisions" - Hutch	Kalish
	· •	Concur. See Chit #1. After GRD is updated. Perform required analysis	Complete - Art Brooks along with Mike Z evaluated additional TF Coil operating scenerios included in analysis. TBD whether these requirements will be officially in the GRD but they are covered herer either way Project will appropriatly capture in GRD	Kalish

7	Look at the resonant frequencies of the structure of the trim coils, which being light and small and inductively coupled, could lead to interesting vibration and resonance phenomena depending on how the power supply waveform comes out. I suspect that experience on TFTR and other machines up there gives you a lot of knowledge on this already. Harris	Concur. Consider performing analysis once operating scenarios and parameters are established and documented.	"The vacuum vessel vibrations on ATF were a product of a system with large power supply ripple (it was a 6-phase rectifier), strong inductive coupling between the coil and the vacuum vessel (the coil was wound into a helical groove in the VV), and a thin vacuum vessel wall (0.25-in. stainless as a I remember). NCSX is better off in all these respects. Moreover, the NCSX trim coils are mechanically well isolated from the VV by the MC shell, so it is difficult to see how any VV acoustic vibrations would couple to the trim coils. The risk of this being a problem is very low, so no further analysis is needed." Hutch	Neilson
8	(1) Simulate Induced Voltages. (2) Provide Inductance Matrix. (3) Calculate resistances of coils. Ramakrishanan	Concur. Furnish this information to WBS4	Art is updating inductance Matrix	Kalish
9	Establish by calculations that the stipulated time response is achievable with the calculated coil parameters. Ramakrishnan	Concur. See Chit #8	Raki to reafirm with updated inductance matrix	Kalish

Some level of simulation of proposed scenarios that include the trim coils needs to be executed. This is needed to ensure that power supply specs are realistic and/or sufficient. Hatcher		Consider as part of future power supply design	Raki
Don't put thermocouples on every trim coil. It does not seem necessary given your thermal margin. Consider putting thermocouples on 1 or 2 coils/ half-period to sense overall cryostat temperature distribution. Zarnstorff	Concur. These details need to be included in the Trim Coil SRD and drawings.	Added to Specificaton	Kalish
Add G-10 or stainless steel strips strips between support angle and coil to avoid corner raduis interference. Heitzenroeder	Concur. Coil corner details will be addressed in final design drawings	Complete- In assembly drawings	Kalish
Consider solid (thicker) solid bar stock as Stiffening Plate. Consider Inconel 601 Bar Stock. Dahlgren		Complete- Design now includes solid bars	Kalish

	Consider aluminum as material for structure. Insulate the one cover structure that bridges the gap in the base structure to prevent an eddy current loop. Use a single Kapton layer for insulation. Zarstorff			Considered- SS provided margin for deflections and eliminated edy current issues - Design is 316 SS	Kalish
15	Cutting the support bases from plate will generate lots of waste. Consider casting the bases, or fabricating them some other way. Zarstorff	Concur.		Considered- Water jet cutting of SS supports allows flexibility to build in house and provides lowest risk to schedule. Casting has proven to be involved and would require final machining most likey exceeding costs of water jet cutting stock plate, Design is 3/4" plate	Kalish
16	Consider a 10 X 12 turn coil configuration to bring both leads out at the top (or bottom). Dahlgren	Concur.	Will consider	Complete- Design is now 10x12	Kalish

16	Consider a 10 X 12 turn coil configuration to bring both leads out at the top (or bottom). Dahlgren	Concur.	Will consider	Complete- Design is now 10x12	Kalish
17	Consider 120 turns so that the leads are on one side. Ramakrishnan	Concur.		Considered- Water jet cutting of SS supports allows flexibility to build in house and provides lowest risk to schedule. Casting has proven to be involved and would require final machining most likey exceeding costs of water jet cutting stock plate, Design is 3/4" plate	Kalish
18	Can the casings of multiple coils be made continuous such that external ground wires be brought (out) only at controlled places for the whole system? Ramakrishnan	Concur.		Complete- grounding scenerio reviewed with Raki now includes isolated coils each individually grounded to the MCWF	Kalish

Other PDR Issues Resolved

NCSX_

• "Chits to Self" From PDR Complete

- $-\sqrt{}$ "Ground Isolation Needs Detail Design"
- ✓ "Lead Support Concept Not Complete"
- $-\sqrt{}$ "Material Selection Required- Mag. Permeability Issues"
- $-\sqrt{}$ "Assembly Issues need to be fleshed out"

Cost- Coil

NCSX

Coil Cost Revisited

- Original Coil Cost Estimate based on custom conductor and out of plane coils \$736K
- New Design with off the shelf conductor and planar coils drops estimate to \$583K
- Suggest procurement of two spares for each coil type for a delta of +\$42K

Coil Cost Spread Sheet

NCSX

Trim Coil Material Estimate							
		Trim1	Trim2	Trim3	Trim4	Total # Coils	
II. Materials M&S							
Number of Coils		0.00001	24	0.00001	24	48	
Conductor With Insulation Cost Per LB		\$12	\$12	\$12	\$12		Vendor quote
Conductor With Insulation Cost Per Coil	\$	\$688	\$363	\$329	\$362		
Epoxy volume reqd. (15% void fraction)		0.58	0.30	0.28	0.30		
Epoxy cost/liter	\$/I	\$79	\$79	\$79	\$79		\$300 per gallon as paid for
Epoxy cost per coil	\$	\$46	\$24	\$22	\$24		
Material Costs Epoxy all Coils		\$0	\$579	\$0	\$578		
Material Costs Conductor with Insulation all Coils		\$0	\$13,897	\$0	\$13,869		
Material Costs Total		\$0	\$14,476	\$0	\$14,446	\$28,923	
Everson Budgetary Estimate							
Total Material Cost All Trim Coils							\$28,923
Cost from Everson Budgetary Estimate out of Plane		\$8,450	\$7,575	\$7,575	\$7,575		
Adjusted Cost for Planar Coils		\$8,450	\$6,439	\$6,439	\$6,439		
Total Cost for Fixtures		\$0	\$30,000	\$0	\$30,000		\$60,000
Recurring Costs for N Coils no materials		\$0	\$154,530	\$0	\$154,530		\$309,060
Total Cost For N Coils with Materials		\$0	\$199,006	\$0	\$198,976		
Total Cost All Coils							\$397,983
Everson Budgetary Estimate (adjusted for unce	ertainty)	Fixtures =					
Total Material Cost All Trim Coils							\$28,923
Manufacturing Cost from Everson Budgetary Estimate		\$8,450	\$6,439	\$6,439	\$6,439		
Total Cost for Fixtures		\$0		\$0			\$90,000
Recurring Costs for N Coils no materials		\$0 \$0		\$0 \$0			\$463,590
Total Cost For N Coils with Materials		\$0		\$0 \$0			÷
		<i></i>			,,		
Total Cost All Coils							\$582,513

56

Hardware Cost Spread Sheet

NCSX

	- 7	
U Brackets	\$12,818	U Channel Material Cost 8
3/4 SS	38400	.75 inch Plate Cost 8
Brackets	5760	Bracket Material Cost 40
	\$56,978	
# of Bolts	1536	
Cost per Bolt	20	Structure Cost Revisited
Cost per Nut	8	
Cost per Washer	5	 Original Costs based on
Hardware Cost	\$81,408	
		estimate of # of brackets per
Forming U Bracket	27	and the second secon
# U Brackets	216	length = \$364K
Cost	\$5,832	longar ¢oonx
		 New Cost Estimate based
Water Jet		
Hrs per Coil	8	on actual design = \$362K
Total Hrs	384	
\$ per Hr	84	 Cost would escalate \$256K
	\$32,256	
	<i>\\</i> 02,200	if ³ / ₄ " plate and U Channel is
Bend and Drill Brackets	\$48,384	
G10 Insulator Fabrication	\$6,720	Inconel
G10 Block Fabrication	\$24,192	
GTO BIOCK FADIICATION	əz4, 192	Accombly costs must be re-
Fabricate Assembly	16	 Assembly costs must be re-
All Coils	768	evaluated (will be lower)
Cost	\$64,512	
COST	\$04,51Z	
Total Cost	\$289.370	
Uncertainty Factor	25%	
Cost for Hardware		\$289,370
Cost for Hardware adjusted for uncertainty		\$361,712
		, , , , , , , , , , , , , , , , , , ,

Coil Procurement Schedule

NCSX_

- Work begun early to expedite schedule
- Relatively simple industry standard design should maximize # of bids
- Coils Specification and SOW in review

Task #	Description	Responsi- ble	Duration	Planned Start	Planned Finish	Actual Start	Actual Finish
1.	Committee meets to review Source Selection Plan	KR/JHC	1 day	5/1/08	5/1/08		
2.	Requisition issued	JHC	3 days	5/2/08	5/5/08		
3.	Trim Coil FDR	MK/JHC	1 day	5/6/08	5/6/08		
4.	Source Selection Plan drafted	KR	1 day	5/9/08	5/9/08		
5.	Specification/Drawings Finalized	MK/JHC	4 days	5/7/08	5/13/08		
6.	RFP issued	KR	1 day	5/16/08	5/16/08	?	
7.	Pre-Proposal Tele/Video Conference	KR	1 day	5/22/08	5/22/08		
8.	Proposals due	KR	1 day	6/4/08	6/4/08		
9.	Evaluation Complete & clarifications requested	PANEL	7 days	6/5/08	6/13/08		
10.	Best and Final due	JHC/KR	2 days	6/16/08	6/18/08		
11.	Committee Recommendation Completed	PANEL	1 day	6/19/08	6/19/08		
12.	Project Decision	DR	1 day	6/20/08	6/20/08		
13.	Subcontract Negotiation	KR	3 days	6/23/08	6/26/08		
14.	Subcontract Awarded	KR	1 day	6/27/08	6/27/08		

Summary / Charge

NCSX

- 1. Are all required analyses complete and formally checked and adequate to establish that the proposed design is feasible and meets established design criteria? Analysis report complete and partially checked
- 2. Are the drawings and documentation adequate to support the procurement and/ or manufacturing process, installation, and ready for sign-off? Coil Drawings are ready for checking and signoff, support drawings are being detailed
- 3. Is the plan for installation of the trim coils compatible with the machine assembly plans?

Yes - Additional meetings with Mike Viola, Tom Brown, and John Edwards have facilitated design improvements to ease assembly

- 4. Is the Product Specification (CSPEC) complete and satisfactory? Are the interfaces adequately defined?
 - Yes CSPEC and SOW are complete and in review cycle. SRD is signed off
- 5. Is the Work Planning form current, and have the applicable requirements been satisfied?

Yes - WP #1435, Detailed and Assembly drawings must be signed off to complete requirements

- 6. Have the chits from the PDR been resolved? Yes
- 7. Are updated cost and schedule estimates available? Yes