

Liquid Nitrogen Distribution System Preliminary Design Review

P.L. Goranson Work Package 161

Outline

CHARGE FOR REVIEW COMMITTEE SYSTEM DESCRIPTION ANALYSES DESIGN FAILURE ANALYSIS PROCUREMENT PLAN, COST, AND SCHEDULE CHITS FROM PREVIOUS REVIEWS

Charge

- Is a current work plan on file?
- Has an SRD been prepared and distributed?
- Do the models and drawings adequately convey the design concept and are they consistent with the supporting analyses?
- Are the analyses and technical requirements clearly defined, reviewed, and documented?
- Have the interfaces been defined?
- Has a Failure Modes and Effects Analysis been performed?
- Have prior review comments/chits been resolved?
- Are the planned manufacturing and constructability approaches compatible with the design and are they practical and cost effective?

WBS 161 LN2 Distribution System Description

Scope

This element covers the distribution of liquid nitrogen (LN2) coolant within the cryostat. The system serves all the actively cooled coils:

TF (WBS 131) PF (WBS 133) Modular (WBS 14)

Work includes engineering design, procurement, and fabrication of ring manifolds, cooling hoses, valves, pressure gauges, and associated supports. Work in this WBS ends with delivery of components to machine assembly operations.

WBS 161 Interfaces

Defined in detail in SRD NCSX-BSPEC-161

• WBS161 LN2 System

Includes supply/return manifolds and routing and distribution of coolant between coil input/output terminations and the manifolds.

Presently, the valves and gauges are included in WBS161 estimates but will be installed by WBS 62.

• Central I&C (WBS 5)

Central I&C (WBS 5) processes the output from the LN2 distribution system local I&C sensors (i.e. thermocouples)

• WBS171 Cryostat

The supply and return lines carrying LN2 to/from the supply/return headers, and leads from local I&C sensors, penetrate the cryostat wall.

• WBS 15 Coil Support Structures

The LN2 manifolds and hoses connect to and are mechanically supported by the coil support structures.

• Cryogenic Systems (WBS 62)

Supply and return lines carrying LN2 to/from the supply/return headers connecting to the LN2 supply system <u>outside</u> the cryostat wall and outboard of the WBS 161 LN2 valves and pressure gauges, as well as the <u>inside</u> LN2 vertical run headers from cryostat interface to 161 ring manifold connections.

• Electrical Power Systems (WBS 4)

Grounding requirements applicable to coolant lines and manifolds.

Requirements

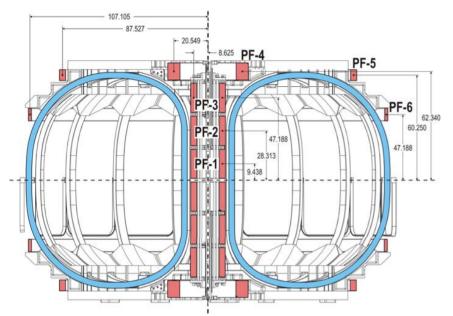
Requirements are defined in the system requirements document NCSX-BSPEC-161.

Include:

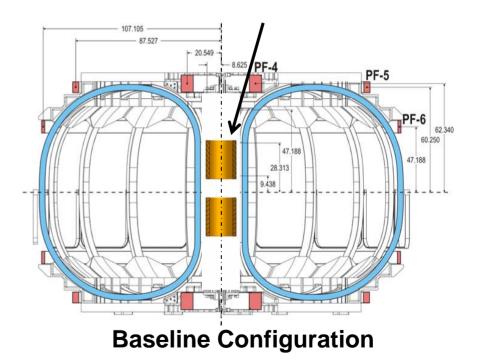
- Operation at 77-94 K with Liquid Nitrogen (LN2).
- Operating pressure sufficient to assure single phase liquid flow during operation.
- Sufficient flow to meet cool down requirements of the MC and Conventional coils.
 - handle heat load during standby and bakeout
 - return coils to <80K after shots
- Assure flow balance between the coolant systems.

Requirements Continued

- Meet electrical isolation and grounding requirements
 - Isolate the Conventional coil cooling hoses (insulator breaks on both coil termination end and the supply/return manifold end).
 - Isolate the MC cooling hoses from the supply/return manifold end and connect the hoses to ground through a resistor.
 - Cover all braided hose with insulating tubing. It's purpose is to prevent hose from shorting to surrounding structure and thus permits measuring resistance to ground)
 - Isolate the ring manifolds from mounting structure



Central Solenoid, TF, and PF Configurations



Full Upgrade Configuration

- Baseline is PF1a, PF4, PF5, and PF6 (2 each, upper and lower).
- Device to be upgradeable to the Full Upgrade Configuration, where PF1a is replaced by PF1, PF2, PF3.

PF1a coils from NSTX are sufficient through Phase 3

Cooling System Diagram

Dual supply and return manifolds

- Individual controls are not required, a single valve in MC return balances

both manifolds

- Individual circuits are passively (self) balanced

Flow balance (restrictor) valve

OAK RIDGE NATIONAL LABORATOR

~2 atmos drop

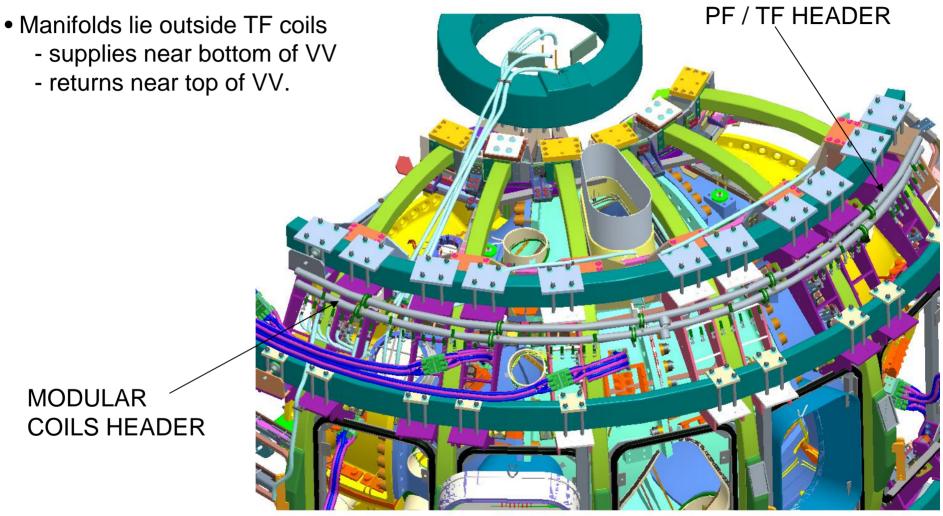
Flow distribution Calculations

- PF1A is used in CD4, could be replaced by PF1, PF2, and PF3 in future operation.
- Pressure drops fall in two well defined groups.
- This thermohydraulic information is incorporated into pending DAC NCSX-CALC-161-001.

	ID (in)	Length of tracing (ft)	Length of hose (ft)	Minimum flow required (gpm)	Actual flow (gpm)	Pressure drop (atmos)
MC	0.18	4	18	1.1	1.2	2.42
PF1	0.354	304	24	1.1	1.1	2.42
PF2	0.354	304	24	1.1	1.1	2.42
PF3	0.354	304	24	1.1	1.1	2.42
PF1A	0.354	178	24	1.1	1.2	2.42
spares				0.5	0.5	4.51
PF4	0.354	861	21	1.1	1.4	4.51
PF5	0.354	1100	21	1.1	1.2	4.51
PF6	0.354	786	18	1.1	1.4	4.51
TF	0.312	355	18	1.6	1.6	4.51

Flow in Headers

• Pressure drops in headers and branch manifolds is negligible.

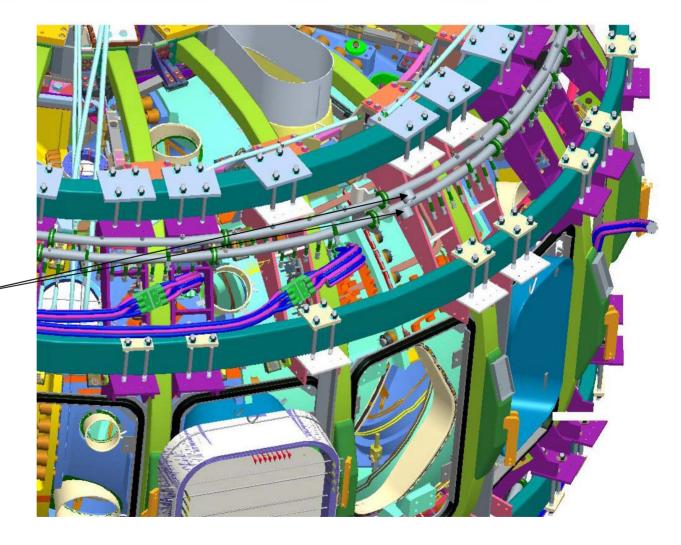

	inside diameter inches	flow rate I/s	maximum velocity m/s	Re	friction	maximum loss per m (atmos)
MC header	2.049	3.7	1.75	481,257	0.012	0.003
MC branch	1.592	1.9	1.45	309,704	0.013	0.003
TF header(upgrade)	2.049	1.2	0.58	158,996	0.016	0.0004
TF branch	1.592	0.6	0.48	102,319	0.018	0.0004

Manifold Configuration

Manifold Configuration

• Uses four (two supply and 2 return) 115 deg. manifolds per field period made from 316 SS Schedule 40 pipes.

- Total angle per field period will be 117 deg. (including the pipe caps)
- 72 cooling ports supplied by two manifolds 48 for MC coils + 6 for TF coils + 4 for PF coils + 14 extra
- Uses SS flexible hoses with straight tube ends. (similar to VV)
- Angular orientation of the cooling ports varies along the manifold length for easier hose routing
- Vacuum vessel (extended with 1" insulation added) ports can be cleared



Header Connections

Both upper header connections oriented toward the bottom of the machine

Manifold Hose Insulators

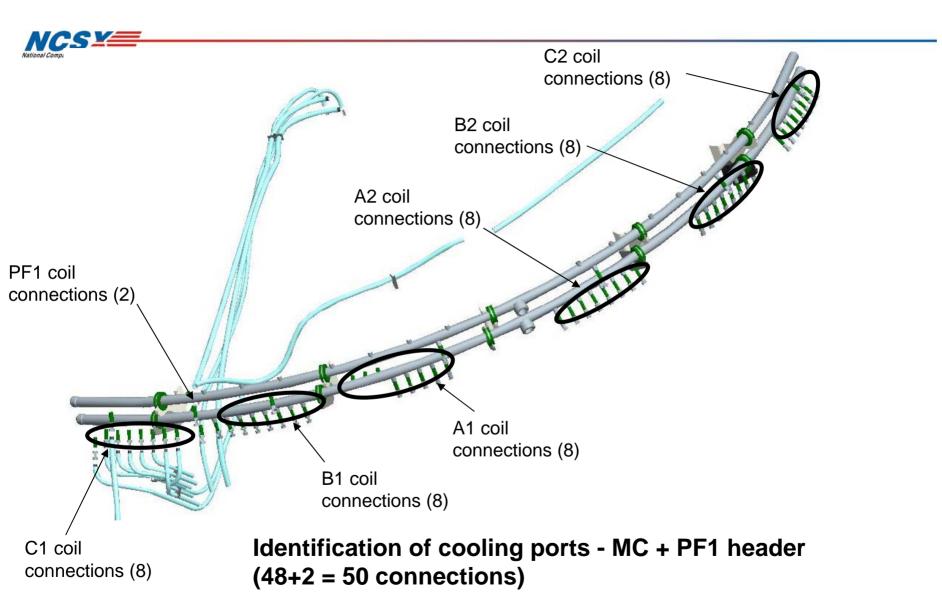
	_
oses are isolated from the nanifolds by G10 insulating reaks	
SCHEDULE 40 PIPE	
PIPE CAP	
COUPLING FEMALE	
G10 COUPLING ASSEMBLY MALE BOTH SIDES	
YOR-LOCK FEMALE THREADED	
TUBE FITTING	
SS BRAIDED HOSE	
PTFE TEFLON SLEEVE	

G10 Insulating Break Design

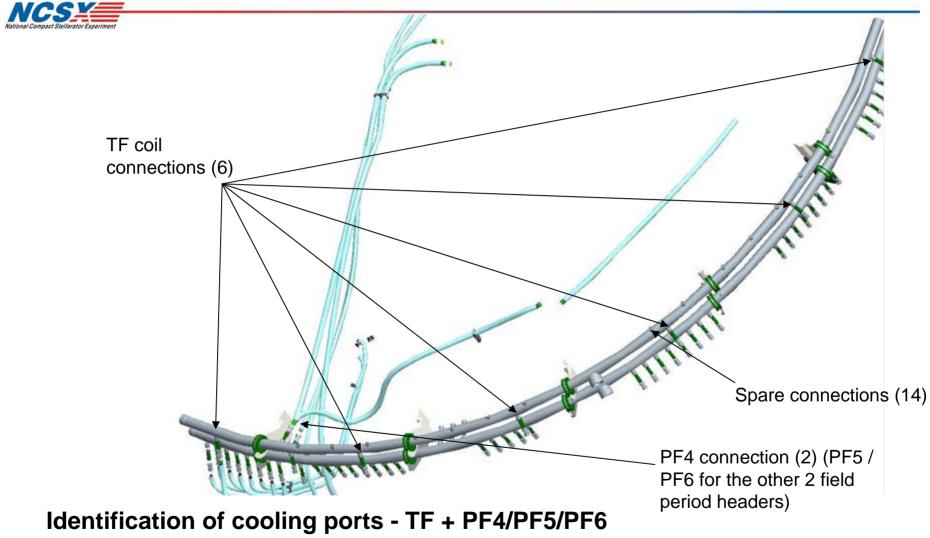
- Unit is leak checked subassembly with fittings attached.
 - two sizes (1/4" and 3/8")
 - two types, one with male treads and one with tube end
- Configuration is based on proven design, tested on C1 coil.
 - Male pipe threads on G10
 - Female pipe threads on SS fittings
 - Threads sealed with
 - "Formula 8" (Fluoramics Inc.) sealant. Stycast and teflon tape also work.
- Prototype fabricated at MDL was submitted to LN2 plunge tests.

Tube end is used on one end of 3/8" PF4, 5, 6 units

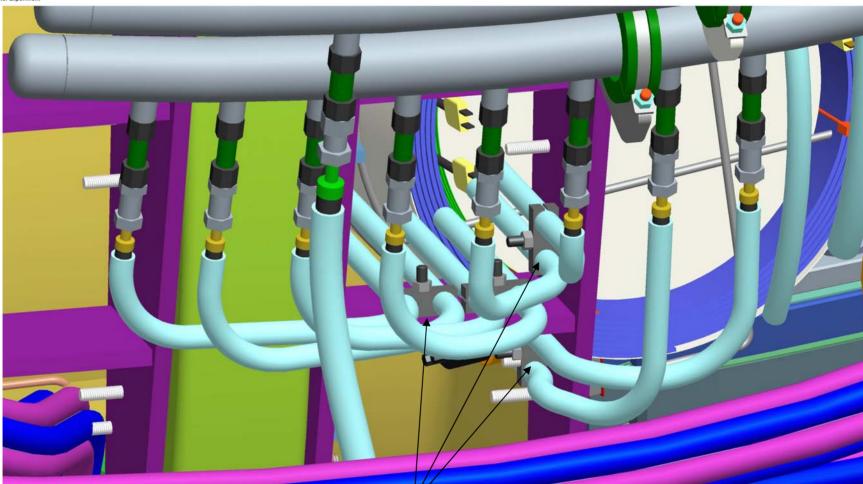
Manifold Location and Mounting



- It was verified that all the vacuum vessel service ports (plus 1" of insulation) are not interfering with the manifold assembly even after they are extended.
- Mounting of the manifolds will be realized with stainless steel pipe clamps and G10 isolator bushings propose 5 mounting points.
- Studs will be welded on the PF support brackets
- The spacing between the G10 bushings and pipe surface as well as the spacing between the clamps and the G10 bushings is 5/16"
- The mounting brackets are custom due to the various distances between the mounting point and PF support bracket

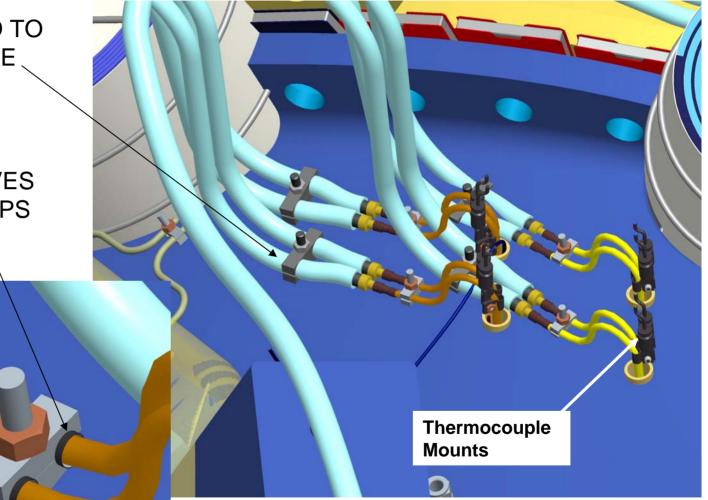

MC Cooling Manifold Connections

TF/PF Cooling Manifold Connections


header (6+2=8 connections + 14 spares)

Mod Coil Hose Routing

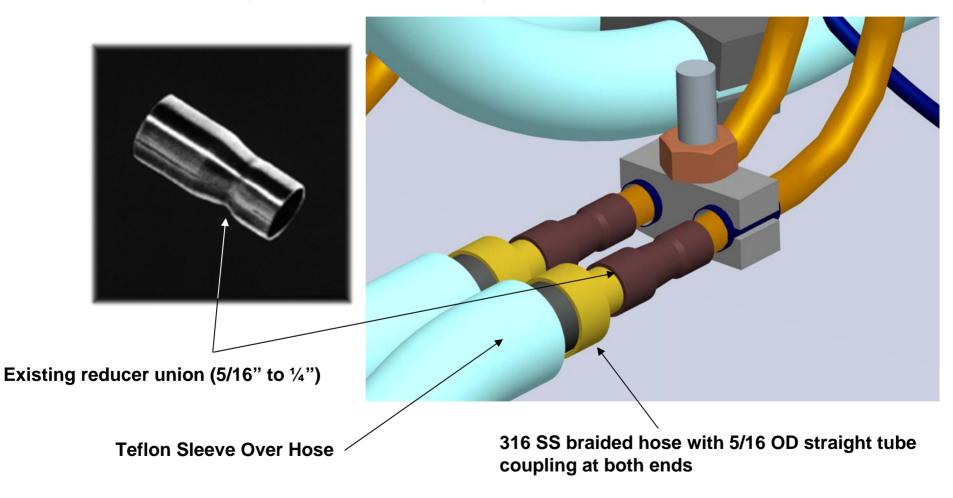
CLAMPS MOUNTED TO SUPPORT STRUCTURE



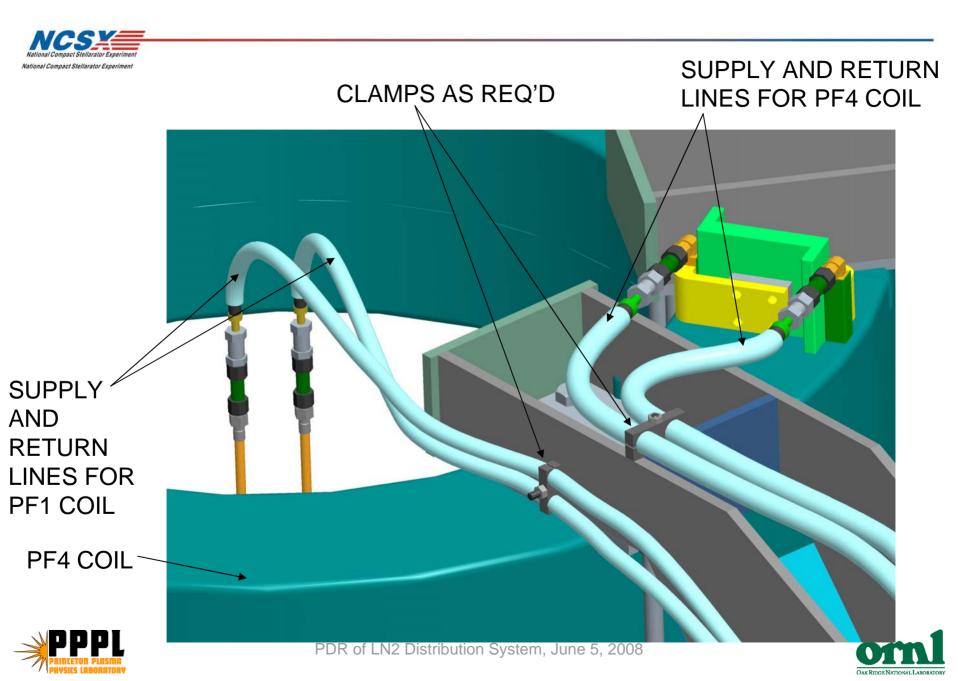
Mod Coil Hose Mounting

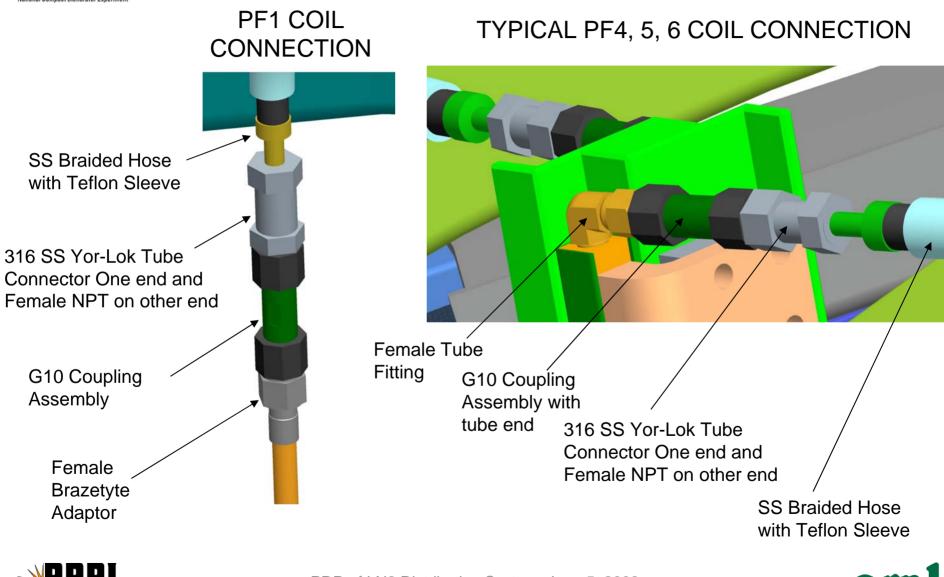
CLAMPS MOUNTED TO MOD COIL SURFACE (Isolated with Teflon Hose Sleeve)

INSULATING SLEEVES INSIDE TUBE CLAMPS FOR ISOLATION $\$



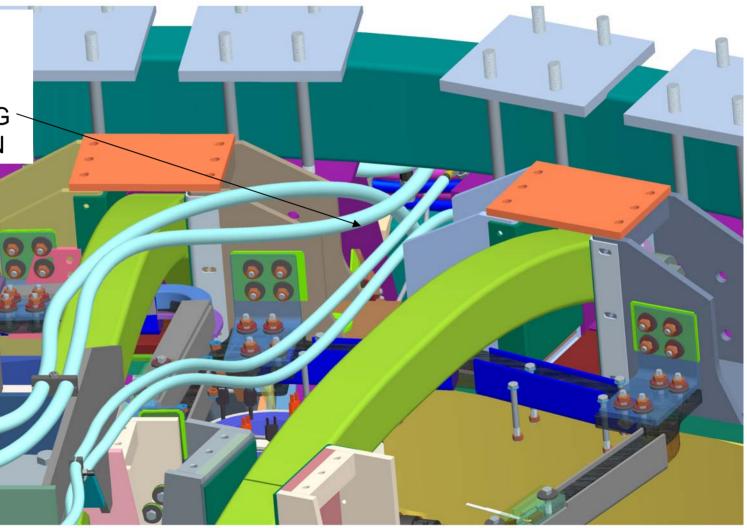
MC Coil Typical Connection


The flexible hose will be connected via the BrazeTyte reducer unions 5FF-5-4 (existing) to the coils cooling circuits

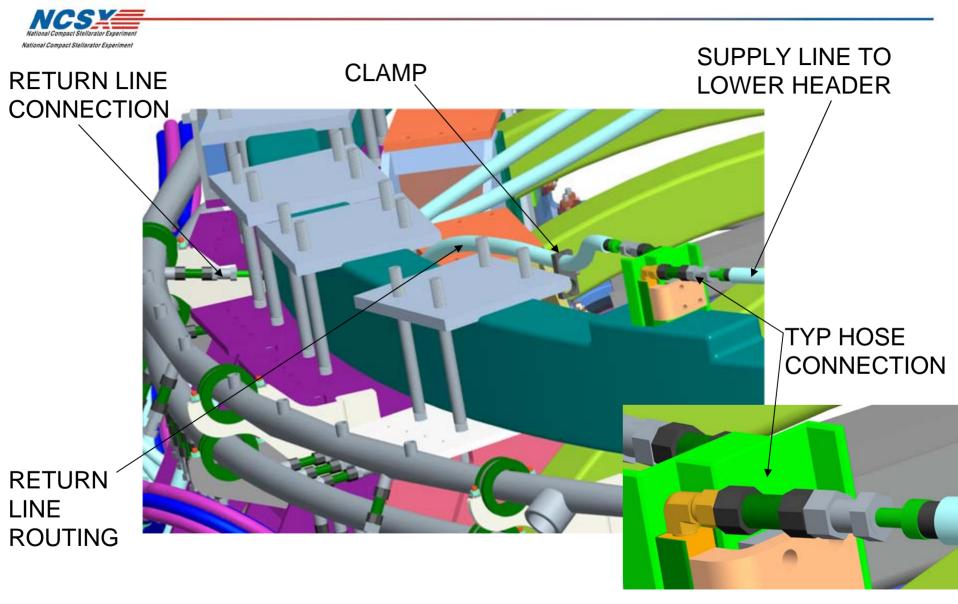


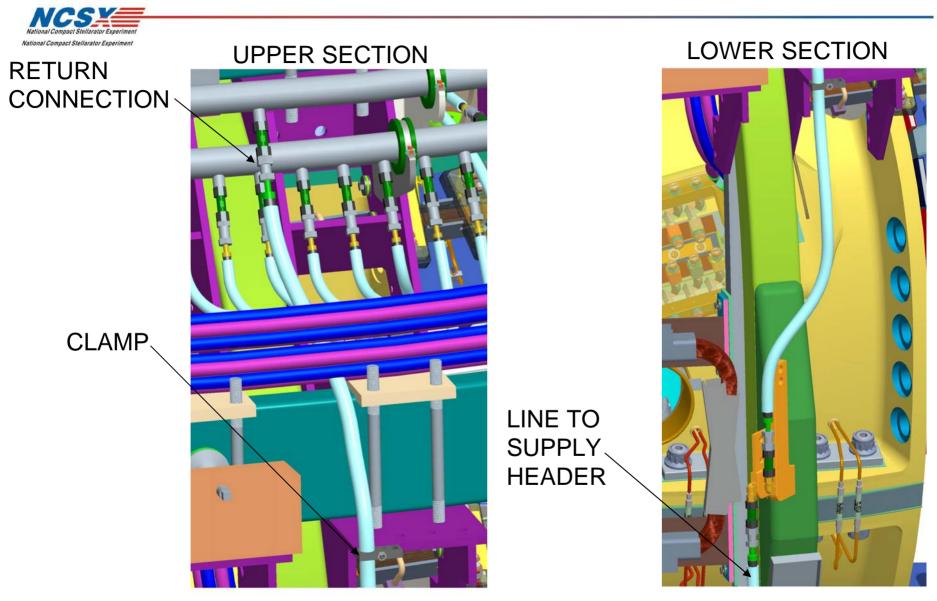
PF1 and 4 Hose Routing

PF and TF Connection Details

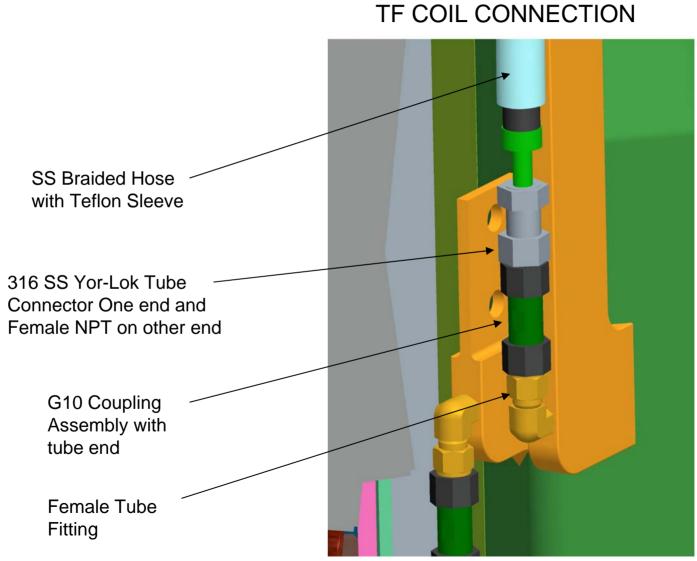


PF1 and 4 Hose Routing to Header


ADDITIONAL CLAMPS MAY BE ADDED AS REQ'D DURING ~ INSTALLATION


Typical PF5 and 6 Hose Routing

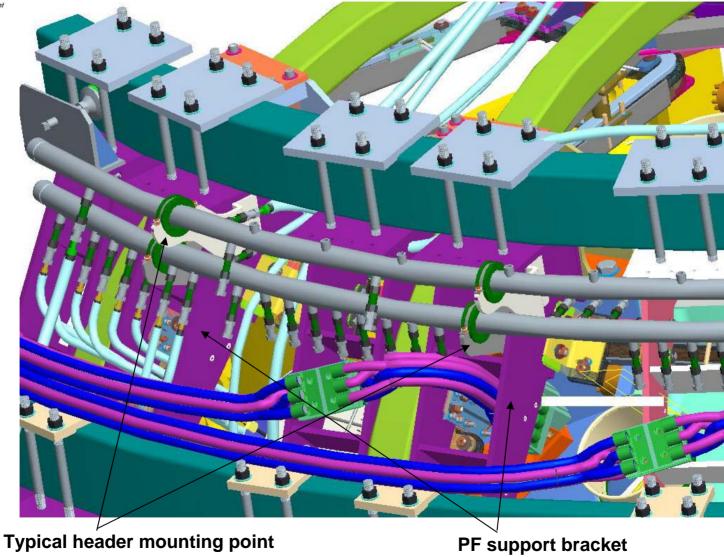
Typical TF Hose Routing



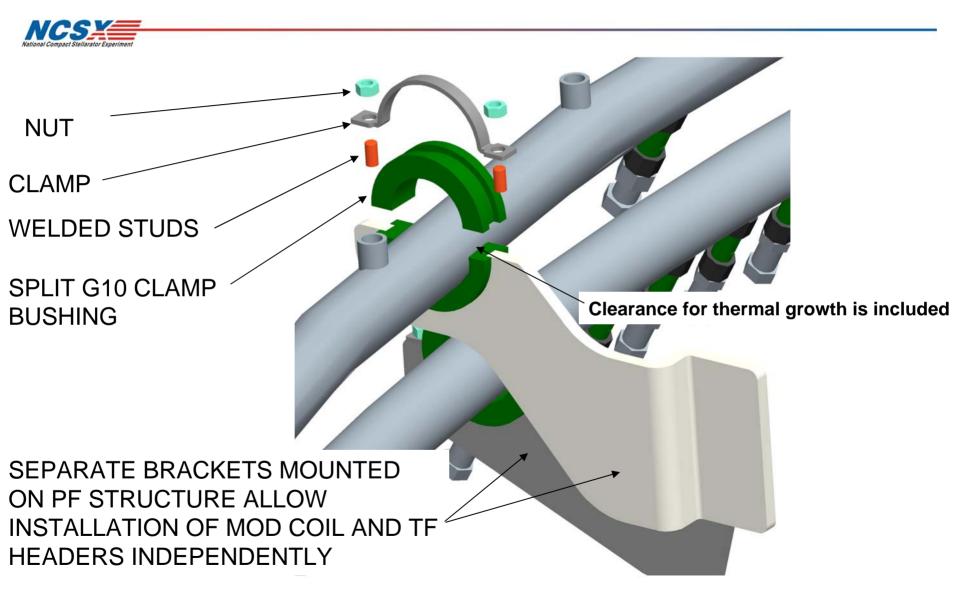
TF Hose Connection Details

Cooling Manifold Mounting

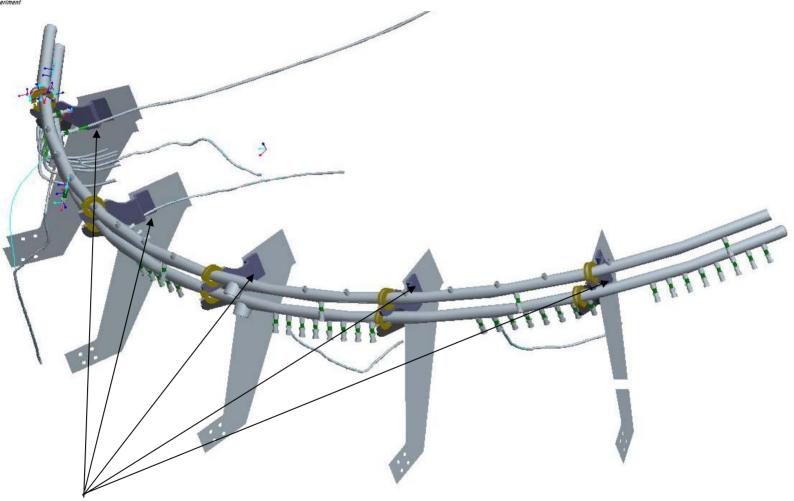
- Mounting of the headers will consist of welded brackets on the PF support brackets and clamps.
- The welded brackets and clamps will be isolated via a G10 bushing to prevent electrical contact. The spacing between the G10 bushing and header surface is TBD.



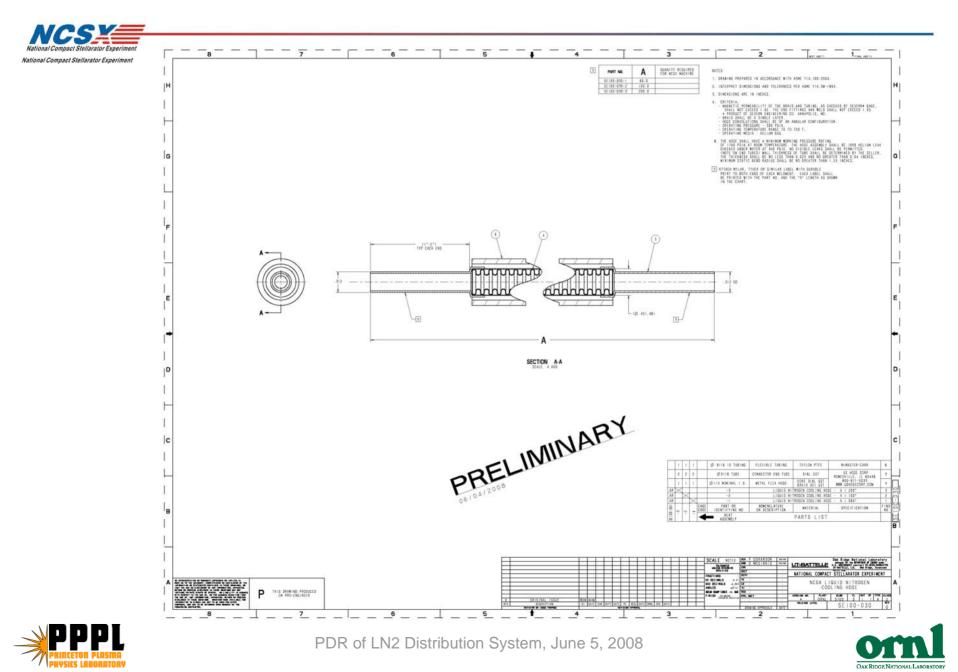
Cooling Manifold Mounting



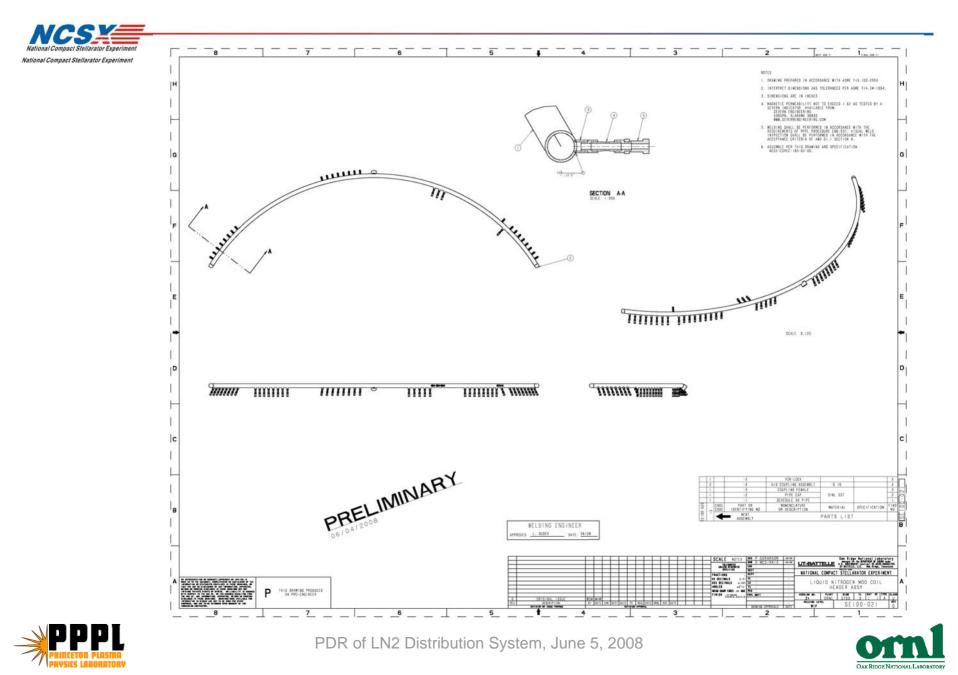
Mounting Components



Mounting Brackets



5 mounting points for both headers



Preliminary Hose Drawing

Preliminary Header Drawing

Risks and Mitigation

Leaks or failure in hoses

- Consequence

Small leaks have little consequence since it is nitrogen leaking into nitrogen. It would increase operating cost by cutting efficiency.

Large leaks or breakage could increase pressure in Cryostat, increase cooling time, and imbalance flow.

- Mitigation

Hoses will be 100% tested before installation.

Hoses have huge safety factor (20).

Hoses are cryogenic industry standard with long history of success.

Cryostat will have pressure monitoring and relief mechanisms.

Thermocouples and pressure monitors will be utilized to detect off normal operation.

- Detection and Recovery

System will be shut down if pressure or thermocouple readings are off normal. Hoses are accessible and replaceable.

Risk Mitigation Continued

• Loss, low, or restriction of coolant in a hose due to blockage, air trapping, imbalanced flow, break, or lower than predicted flow

- Consequence

Insufficient cooling to meet requirements for cool down time and temperature between shots.

Inability to maintain temperature at desired operation level.

The system is not jeopardized nor is safety compromised.

- Mitigation

System is designed to work satisfactorily within a large error margin (+/- 25%). Nitrogen will be filtered.

Breaks are unlikely (covered previously).

System is designed to be passively self balancing and inherently capable of clearing bubbles by using symmetry, restriction in return lines, low velocity in the manifolds, and high system pressure. The two system can be matched using return valve and pressure gauge.

R&D at MDL will confirm the flow rate in the corrugated hoses.

- Detection and Recovery

Monitoring of hose and coil thermocouples should detect ratcheting or off normal temperatures and locate approximate trouble area.

Hose could be removed and inspected and could be replaced or modified if necessary.

Risk Mitigation Continued

• Failure of G10 insulator break due to pressure, temperature induced stress, physical loads.

- Consequence

Same as leaking or failed hose.

- Mitigation

Design is based on one tested and proven in C1 coil testing.

The units survived plunging in LN2. (MDL testing)

The hoses will be cooled slowly at the same rate as the coils to prevent large gradients in the breaks.

The hoses have strain relief clamps attached as closely as practical to the G10 breaks.

- Detection and Recovery

Same as a failed hose. Units can be replaced.

Cost Estimate Basis

- LN2 hoses are catalog items.
 - Lengths are based on ProE models.
- Manifold designs and prices are based on a similar design used on the VV.
 - Sizing is based on thermo hydraulics performed by Engineering.
- Material cost is estimated on a \$ per lb at current market.
- Supports are based on a \$/length of hose.
- Engineering time is based on number and type of drawings for each element, specifications, and the analyses anticipated.

Description:

This effort covers all R&D, Title I, II, and III engineering for the LN2 distribution system inside the cryostat, which includes all the necessary manifolding and connections to interface with the ex-cryostat LN2 supply system. This system will be fabricated in-house by PPPL. All Title III engrassociated with installation is included in WBS 7.

m 11

а

0 n

with installation is included in WB	01.				Г)			40	URS				
Task ID	Multiplier	Unit	Number of Units	Ηοι	urs		ORNL EM	ORNL DSN	ORNL RM	EMEM	EMSM	EMSB	EMTB	EAEM	EASB
Title I an II Design	8	hrs/model	21		168		168								
Pro-E models (avg) assy dwgs	° 16	hrs/dwg	24		384		384								
, .	8	-	24 13		304 104		104								
Detail drawings installation dwg	8 16	hrs/dwg hrs/dwg	13		224		224								
cooling schematic	20	hrs/dwg	14		224	0	20								
electrical schematic	20	hrs/dwg	1		20	1	- 0								
I&C schematic	20	hrs/dwg	1		20	1	20								
stress analysis	20 40	hrs/calc	1		20 40	- 1	40								
thermal analysis	40 40	hrs/calc	1		40		2 40								
special analysis (electromagnetics)	40 160	hrs/calc	0		40 0		40								
fab specifications	160	hrs/calc	2		320		320								
preliminary and final design reviews	80	hrs/rev	2		160	-	160								
Resolve PDR Comments	80 40	hrs/PDR	2		40										
meetings/reporting/presentations	10%	% of tot hrs	· · · ·		152		40 152								
Subtotal Title I & II Design	10 /6	/0 01 101 1115		1672		1672		0	0	0	0	0	0	0	
R&D Activities							a								
	rocourized L	12 and value		40		1	40								
R&D pressure drop simulation with provide the pressure drop simulation with provide the provided	ressunzed Li	vz and valve.		40			40								
Design of test unit.															
Title III															
Disposition of deviation requests and	d					i	0								
non-conformances	<u> </u>	hrs per	38		38					38	0	0	0	0	0
As-built drawings	2	# dwgs	52		104			104	0	0	Õ	Õ	Õ	Õ	Õ
Procurement coordination	_				80			0	0	40	40	0	0	0	0
Subtotal Title III Design				222	()		104 0	7			° o	° o	° o	Ũ
Total					1934	_	9								
						:	0		L	- F (
		PD	R of LN2	DIST	ridut	IO	г Зу	stem,	Jun	e 5, 2	2008				
PHYSICS LABORATORY															

Materials and Supplies Update

Final configuration of manifolds increases hose length, thus cost, of hose ~\$33K from present M&S estimate.

Description:

This effort covers procurement of materials for the LN2 distribution system by fixed price subcontract.

Assumptions:	
outside engr rate =	120 \$ per hour
outside fab rate =	60 \$ per hour
outside inspection/technician rate =	80 \$ per hour
MDL labor	80 \$per hour
Purchased parts:	
coolant line pigtails from coils to manifolds	\$57600
Insulating Jumper hoses	0
Manifolda for apoling lines	¢0.095

Manifolds for cooling lines		\$9,085
valves		\$9,000
orifices & other hardware		\$10,000
Thermocouples		\$0
R&D material and labor from below		\$18,000
	subtotal, purchased parts	\$103,685

Fabrication and Assembly are the Same

This effort covers all the fabrication of the LN2 system inside the cryostat including headers.

Worksheets

coolant line pigtails from coils to manifolds

Average length of pigtail		3 ft								
	Total	TF	Modular	PF1	PF2	PF3	PF4	PF5	PF6	Trim
No. of coils	60	18	18	2	2	2	2	2	2	12
circuits per coil at header		1	8	0.5	0.5	0.5	0.5	0.5	0.5	0
total circuits	168	18	144	1	1	1	1	1	1	0
Total number of pigtails	336	supply and	return per circ	uit						

Manifolds for cooling lines

Assume 2 pairs of 1.5 inch manifolds for each field period, one above and one below the midplane inside the PF5 coil Each set of manifolds will have 1/3 of the required cooling connections plus 25% spare The manifolds will connect via vertical pipes to the supply system below the cryostat

avg toroidal perimeter of field period avg vertical height of connection lines no of headers/FP cost of tubing cost per field period total number of coolant connections, all	16 ft 9 ft 4 \$15 per foot, 316 SSt \$1,488
headers	840
hours to weld each connection	0.5 hr per connection
shifts to form manifold tube	0.5 per manifold pair
crew size for forming	2
hours to cut vertical pipes	2 hrs per pipe
hours to weld vertical pipes to header	2 hrs per pipe
total shifts for manifolds	71
tech hours for manifolds	564 hours
technical oversight, inspection	141 hrs
total hours for manifolds	705 hrs

Schedule & Staffing are Unchanged

Schedule

Activity ID	MILE -Stone Level	Activity Description	Duration (work days	SHIFTS	Forecast Start	Forecast Finish	Total Float	Cost to Complete	FY08	3 FY09	FY10
161 - LN2 Distri	ibution										
191-001		Title I design WBS 161 LN2 manifolds&piping	166*		01OCT07A	02JUN08	197	48,937.50		ORNLEM =522hr ;	
191-002	3	LN2 manifolds&piping- PDR	1		03JUN08	03JUN08	197	1,208.00		ORNLEM =08hr ;	
161-003	3	Resolve PDR comments	5		04JUN08	10JUN08	197	6,040.00	J.	ORNLEM =40hr ;	
161-011A		R&D build mounts & lead terminations	60		11JUN08	04SEP08	197	24,040.00		ornl41= \$18k	
191-011		Title II design WBS 161 LN2 manifolds&piping	60		11JUN08	04SEP08	197	65,250.00		ORNLEM =522hr ;	
191-012		LN2 manifolds&piping - FDR	1		05SEP08	05SEP08	197	1,208.00		ORNLEM =08hr;	
191-037		Prep Req,Bid,Award-manifolds,hoses,valves etc	25		08SEP08*	10OCT08	197	0.00			
191-038		Fab and deliver-manifold assy,hoses,valves etc	90		13OCT08*	26FEB09	197	136,453.09		41=57.23\$k EM//TB =52	; 2hr;em//sm=131
191-031		Title III engr WBS 161	118		08SEP08	03MAR09	1,420	24,040.53			8hr ;em//em=78;em//sm=4

Staff					Paul Goranson 40%	TBD Designe 100%	Sorin r Homescu 100%	total work hours	Total WAF
Jobs	start	end	days	weeks	hrs	hrs	hrs	available	hours
headers(161)	1-Jan	1-Oct-08	274	39.1	522.3	500	1565.7	2088	1934

Design is straight forward and procured items are by and large commercially stocked. Manifolding is similar to gas system on VV, which is complete and costs are well documented.

Schedule Milestones

With two full time designers and half time engineer, the projected schedule could be met.

Chits form Previous Reviews

• Concern about the integrity of the G10 insulator break design

Resolution:

Design change recommended by the cryogenic people were incorporated.

• Concern about flow balance with the parallel flow configuration due to bubble formation or low resistance in some branch lines.

Resolution:

Consensus among experts was not achieved. Some felt the system would work adequately due to the wide latitude in the flow required, high system pressure, symmetry, and flow restriction at exit. They felt the system would be capable of flushing bubbles.

The system will not switch to liquid until temperature is below 80 K, to avoid pool boiling and bubble formation.

No better configuration was suggested. A valve and gauge at every line would not be accessible, would be very expensive, reduce overall reliability, and could not be shown to impart a mechanism that clears bubbles.

The best resolution is to test the system before final installation.

