NCSX Vacuum Vessel Systems

Failure Mode and Effect Analysis (FMEA)

NCSX-FMEA-12-001-00

July 31, 2006

Prepared by:

Paul Goranson, NCSX WBS 12 Manager

Checked by:

B. Nelson /ORNL Systems RLM

Approved by:

P. Heitzenroeder, NCSX Engineering Manager

Subject: NCSX FAILURE MODES AND EFFECTS ANALYSIS (FMECA)

Originator:	P Goranson
WBS Element:	121
Component:	Vessel and Vessel Sub-systems

Date: July 31, 2006

Summary

The following requirements and recommendations are derived from the FMECA analysis for NCSX WBS 1.2 Vacuum Vessel. They are provided to assure safe and reliable operation of the VV and it's systems during normal operations and during off-normal events.

Overview

The vacuum vessel (VV) provides a high vacuum environment for plasma operation. Purity will be maintained by bake out of the vessel to 350 C. The port end flanges will be maintained at 150 C during the bake out. The VV and ports will be maintained at 21-80 C during operation. Temperature control of the vessel is via coolant tube/hose tracing attached to the outer surface of the vessel and resistance heaters on the port extensions. Schematics in the Appendix show the recommended cooling/heating system and the temperature control system, including the control logic.

1. Failure mode: Coolant tracing(s) leaks.

Failure cause/mode:

- a. a small leak at a weld fitting
- b. a pin hole in a line
- c. a catastrophic failure of a tube with release of pressured helium into the cryostat.

Fault detection/Isolation:

The following systems should be provided:

Pressure sensors in the helium system to detect large leaks and shut down the system, closing off helium supply.

The cryostat should be monitored with helium detectors.

A burst disc in the cryostat to prevent over-pressurizing.

The VV coolant system is fabricated in two parallel system and valves should be provided to isolate them so operation of one may continue while the other is shut down and repaired.

Comments:

The individual coolant lines on the VV may be disconnected at the headers and checked for leaks. A defective line could be plugged and the system continue to operate with little degradation in performance. This is studied in detail in the DAC NCSX-CALC-12-001 on Local Heating and Cooling.

2. Failure mode: VV leaks.

Failure cause/mode:

A faulty port seal is the most likely cause, a port extension weld failure is less likely and a torus shell or sector to sector assembly weld is much less likely

Fault Detection /Isolation:

A mass Spectrometer should be incorporated into the VV vacuum system to monitor for off-normal levels of atmospheric gases.

Comments:

Port seals are accessible for bagging and conventional helium leak checking Port extensions are provided with leak check tubes, attached at weld joints and lead out to the flanges. Welds may be leak checked anytime in the future by supplying helium to the tubes and sensing the VV interior vacuum.

Leaks in the torus shell or assembly weld will require special compliant boot to apply local vacuum connected to leak detector

3. Failure mode: Tracing does not cool down VV in specified time

Failure cause/mode:

Insufficient coolant flow, coolant pressure, or excessive temperature level in coolant

Fault Detection /Isolation:

Thermocouples, pressure gauges, and flow meters should be provided to monitor coolant temperature, pressure, and flow in the VV supply headers, ahead of, and after, the VV.

Comments:

Cooling power could be boosted and coolant could be sub-cooled to compensate. Calculations in DAC NCSX-CALC-12-002 were done to determine cool down time

4. Failure mode: Port flanges overheat or do not maintain proper temperature

Failure cause/mode: Resistance heater malfunction. Heaters not set properly

Fault Detection /Isolation:

Circuits and controllers are separate for all ports. Detection will be loss of current in circuit.

Thermocouples will monitor temperature in each port extension.

An automatic system should be utilized to alert the operator and shut down automatically if any temperatures exceed critical threshold.

The heaters should be of the proportional voltage type, not the on-off variety. This would prevent large temperature excursions and provide a longer reaction time for the operator.

Comments:

Heaters run at only 10-20% capacity and should have long life. The thermal time constant is long and there is warning long before parameters become critical. Ports 12 and 4 each have four independent heater zones Power to heaters may be boosted.

Heaters and thermocouples are redundant

Calculations were performed in DAC NCSX-CALC-12-003 to determine port temperature.

5. Failure mode: Tracing does not heat VV to 150 C during operation or fails to heat to 350C during baking.

<u>Failure cause/mode:</u> Insufficient flow, pressure, or temperature in coolant.

Fault Detection /Isolation: Captured by Failure Mode 3, above.

Comments: Alternate means such as inductive heating may be used to augment baking.

6. Failure mode: Loss of VV cooling/heating

Failure cause/mode:

Facility power interruption or equipment failure resulting in loss of coolant flow to VV and/or power to port extension heaters.

Fault Detection /Isolation:

Thermocouples warn of critical temperatures.

Backup power supply could be used to keep port extensions warm.

Venting to atmosphere and circulating air through vessel or turning up port heaters (if power available) could prevent a critical temperature situation.

Comments:

Ports with CF flanges terminate inside the cryostat during MIE operation and excursions down to 80 K are possible in the event of a system failure, but analyses have shown they can safely tolerate such an event. The VV thermal time constant is long and provides ample reaction time to take corrective action if desired.

The NB port, port 12, and port 4 terminate outside the cryostat and calculations indicate the flanges will not reach a critical temperature.

7. Failure mode: Helium pumping system or heating system over-pressures

<u>Failure cause/mode:</u> Malfunction in a pump or regulator

Fault Detection /Isolation:

Piping system should incorporate pressure and temperature sensors and be programmed to automatically shut down if failure is detected.

Rupture disks in headers should be provided as backup and would relieve system before damage is possible, if all else fails.

References NCSX-CALC-12-003 Vacuum Vessel Heat Balance Analysis

NCSX-CALC-12-002

Vacuum Vessel Heating/Cooling Distribution System Thermo-hydraulic Analysis

VV Local Thermal Analysis NCSX-CALC-12-001

APPENDIX FAILURE MODES AND EFFECTS ANALYSIS WORK SHEET

Project: NCSX					1 of
WBS Element:	121	Performed By:	P Goranson	Date:	July 20, 2006
Component:	Vessel and vessel sub-systems	Reviewed By:		Date:	

Function: The vacuum vessel provides a high vacuum environment for plasma operation. Purity will be maintained by bakeout of the vessel to 350 C. The port end flanges will be maintained at 150 C during the bakeout. The VV and ports will be maintained at 21-60 C during operation. Temperature control of the vessel is via coolant tube/hose tracing attached to the outer surface of the vessel and resistance heaters on the port extensions. Attached schematics show the cooling/heating system and the temperature control system, including the control logic.

I					
		chamber.			factor of safety.
Off normal a. disruptive operation. b. seismic event	Failure of VV structure.	Loss of device with long shutdown for repairs.	Seismic detection and shutdown of facility.	Large safety factor in structural design. Strict criteria for dead weight on ports. Use of Inconel to limit eddy currents in VV during disruption. Electrical breaks in shell and support equipment.	Two independent analyses of structure with peer review and calculation checks to certify the analyses. Methods proven in past designs. Seismic criteria for region is available.
Final assembly	Modular coils do not assemble over vessel.	Large impact on project cost and schedule.	Vessel contour is monitored after each critical step of fabrication. QA plan provides feedback with vendor supplying step files back to PPPL for recheck before fabrication proceeds.	Ample toerance are being provided for assembly clearance. Out of tolerance features will be detected early and corrected when cost impact is small.	Assembly is being checked by multiple means: stereolithography scale models, computer mathematical models, and 3-D graphics models.
Operation	a. VV leaks. b. Port extension weld leaks.	Leaks can result in large delays in operation and costs to project. Even small leaks can compromise device operation.	a. Vessel will be leak checked during fabrication and baked out to detect leak development before installation. Welds will be inspected and radiagraphed. Leaks may be tracked down by flooding several independent sections	Use of national welding standards, qualified welders, and certified materials. Man access into VV interior will provide cabability to detect and repair both VV wall and port extension welds from the inside.	Thick walled vacuum vessels with full penetration welds have good history of reliability. Visually approved welds in Inconel usually are leak tight.

			of VV exterior with		
			helium under the		
			insulation. Perforated		
			tubes are provided on		
			VV surface for this		
			purpose. Technician		
			can access interior		
			with portable leak		
			detector which sniffs		
			wall.		
			b. Port extensions are		
			provided with collars		
			around weld area		
			during assembly. Leak		
			check tubes are		
			attached to these collar		
			and lead out to the		
			flanges. Welds may be		
			leak checked anytime		
			in future by supplying		
			helium to the leak		
			check collars and		
			sensing VV interior		
			vacuum.		
Operation	VV does not pump	System could fail to meet	Use of code full	Access into the vessel	Long experience in high
	down to specified	design criteria,	penetration welds on	permits repair of defects.	vacuum design
	level due to virtual	acceptable operation	vessel; welds are		minimizes risk.
	leaks.	regime may not be	performed on outside		
		achieved.	with root pass inside.		
			Inspection and leak		
			checking to detect		

Operation	Tracing does not cool down VV in specified time.	System could fail to meet design criteria. Slower operation cycle and delay in data collection.	porosity. Leak detection provisions built into VV field joints. Thermocouples on VV and flanges.	System is robust. Cooling power could be boosted and coolant could be sub-cooled to compensate. R&D testing	Mutiple dependent calculations done with peer review, to confirm operation times will
				of system done to confirm cooldown calculations.	meet criteria.
Operation	 a. Port resistance heater(s) fail. b. Required temperature not achieved. c. Port flanges overheat due to resistance heater malfunction. 	 a, b Cold operation of port extensions, increase in vacuum impurity. Possible compromise of operation could result. c. Failure of flange weld and loss of vacuum. 	 a.,b Circuits and controllers are separate for all ports. Detection will be loss of current in circuit. c. Thermocouples will monitor temperature in port extensions. 	 a. Redundant heaters supplied during assembly. Heaters can be added to port inside[vacuum side] of port if both heaters lost on port. Heaters on outer port extension would also be adequate to bring system into operation envelope. b. System is robust. Power to heaters may be boosted. c. Automatic system will alert operator and shut down automatically if temperatures exceed critical threshold. 	Heaters run at only 10- 20% capacity and should have long life. The thermal time constant is long and there is warning long before parameters become critical. Ports 1 and 4 each have four independant heater zones
Bakeout	Tracing does not heat VV to 350C	Increase in vacuum impurity due to	Thermocouples will monitor VV	Tracing design is robust. Operating temperature flow	Mutiple dependent calculations done with
1				or stating temperature, now,	

		incomplete bakeout. Possible compromise of operation results.	temperature.	or pressure may be increased to compensate. Alternate means such as inductive heating may be used to augment baking.	peer review, to confirm operation times will meet criteria.
Bakeout	Interference between VV and structures such as shell and cryostat due to differential thermal growth.	Possible damage to VV or other components.	Early studies and analyses to assure proper clearances and characterize differential thermal growth.	Liberal clearances between VV and srtructures.	
Operation during CD3. All port flanges except 4 and 12 end within the cryostat	Facility power interruption resulting in loss of coolant flow to VV and/or power to port extension heaters.	VV cools down to cryogenic temperature. O-ring seals in NB port lose compliance and could result in vacuum leaks. Attachment welds on the other vessel flanges are vulnerable to fail due to expansion differences in the stainless and Inconel. Repair would require partial dismantling of Cryostat.	Early studies and analyses to characterize differential thermal stress, and determine critical thresholds. Thermocouples to warn of critical temperatures.	Backup power supply could be used to keep port extensions warm. Venting to atmosphere and circulating air through vessel or turning up port heaters could prevent a critical temperature situation.	DAC-121-TBD indicates that only non- circular ports with dissimilar material welds, terminating within the cryostat will reach critical stress leve temperatures. There are no ports that are in this category. Ports with CF flanges can safely tolerate excursions down to 80 K. The VV thermal time constant is long and provides ample reation time to take corrective action if desired. Small leakage through NB o-rings is acceptable and easily

					corrected; probably
					reseal after temperature
					control regained.
Modualar	Failure in a MC	Long term shut down of	NA	VV uses spacers which may	The VV would be
coil(MC)	requires	facility and dissassembly		be cut free at each joint to	refaced after the cutting
replacement.	replacement.	of VV field periods to		permit removal of field	process, the new gap
		permit removal of MC.		periods. The cutting may be	geometry calculated,
				done with plasma torch,	and a new spacer
				grinder or cutters. Threaded	machined and welded
				holes are provided on the	into the assembly. The
				flange interior for mounting	port extensions would
				fixtures which would	also be re-preped and
				facilitate cutting process.	welded back into
				Some port extensions will	assembly.
				also require removal by	
				cutting with grinders or	
				cutting tools. All work is	
				done from the interior of the	
				VV.	
Operation	Malfunction in	Failure of VV coolant	System pressure and	Piping system incorporates	Piping system has a
and/or bakeout	helium pumping	tubes, which can not be	temperature 1s	pressure and temperature	large margin of safety
	system or heating	replaced, necessitates	monitored.	regulators and is	and tight control is not
	system over-	shutdown of core sytem		programmed to automatically	critical.
	pressures and fails	and dissassembly.		shut down if failure is	
	piping/tubes.			detected. Rupture disks in	
				neaders are backup and	
				would relieve sytem before	
				damage is possible, if all else	
				Tans.	

VACUUM VESSEL TEMPERATURE CONTROL

plg 4/08/05

Diagram is for full Field Period 1 1/4" Ring 1 1/4" Ring Header Header Rupture 2" 2" Rupture 64 . Disk Return Return Disk Header Header Check 5 Check $\frac{1}{10}$ Valve 4 Valve Break `Break TOP Pressure Temperature VERTICAL Monitor Monitor PORT VACUUM VESSEL Cryostat Helium Detector 5/16" tubing/1/4" hose (64 per field period) Shutdown Controller воттом Break Break ₩ Δ <u>5</u> Flow Flow >Shutoff Shutoff 2" 2" Supply Supply Header WBS12 Header Interface 1 1/4" Ring 1 1/4" R'ing (TYP) Header Header

VACUUM VESSEL HELIUM COOLING SCHEMATIC Diagram is for full Field Period