
NCSX
Design Basis Analysis

EM Analysis of Modular Coil Leads

NCSX-CALC-14-011-00
8 Septmeber 2008

Prepared by:

D. Williamson, ORNL

I have reviewed this calculation and, to my professional satisfaction, it is properly
performed and correct. I concur with analysis methodology and inputs and with the

reasonableness of the results and their interpretation.

Reviewed by:

K. Freudenberg, ORNL

Controlled Document
THIS IS AN UNCONTROLLED DOCUMENT ONCE PRINTED.

Check the NCSX Engineering Web prior to use to assure that this document is current.

EM and Structural Analysis of Leads

1. Executive summary
The purpose of this analysis is to determine the worst electromagnetic (EM) loads on
the modular coil leads and evaluate them structurally. Previous analyses have looked
at the seven reference operating scenarios and determined that the 2T scenario
produces the largest modular coil forces [1,2]. This analysis assumes the same
current scenario, but includes the coil leads geometry, modeled as filaments, in order
to determine the maximum running load on the individual conductors. Results
indicate that the peak load in the unsupported leads between the modular coil shell
and the lug connection is 34-lb/in, which produces a stress of 30-ksi in the
conductor. This stress level is lower than the allowable of 35-ksi and does not limit
the performance of the coils.

2. Assumptions
The geometry of the modular coil leads is shown in Fig.-1. In this calculation, the
coil geometry is represented by linear, line-type finite elements (Fig.-2) with a
characteristic length of ~3-in. In the leads area, the discretization is ~6x greater.

Coil currents are specified for the 2-T, high beta scenario, as shown in Table-1 [3].

3. Analysis Methodology
Using the MAGFOR code [4] as a guide, a finite-element computer program has been
developed that uses 2-node line-type current-carrying elements to represent the
individual conductors. The source code for the field calculator is listed in Appendix-A
and the force calculator in Appendix-B. The programs are written in Python, an open
source language available from http://www.python.org.

The geometry is specified in ANSYS format using N, R, and EN commands [5].

Once the running load is determined, peak stress is calculated by treating the
unsupported length of conductor as a simply supported beam.

4. Results
In order to verify the field/force calculator, a comparison has been made with
MAGFOR results obtained during preparations for the C1 coil test [6]. The MAGFOR
code represents current-carrying elements using 20-node isoparametric
hexahedrons, but in this analysis the elements shapes are simple and sometimes
overlapping. As shown in figures 3-5, the MAGFOR model produces a field at the coil
center of 0.55-T and a running load in the winding pack that varies from 1,350- to
6,800-lb/in. The field/force calculator produces the same field at the coil center and
the same average running load, but the peak value is 3,050-lb/in. In the leads area,
the running loads are in good agreement. Since the MAGFOR model has overlapping
elements in the areas with the highest discrepancy, it is believed that there is an
overestimate in these areas, and that the filament-based calculator gives a
reasonable result.

The analysis model was extended to include all modular, TF, and PF coils at the time
steps described in Table-1. Results indicate that the maximum running load in the
winding pack occurs for the Type-B coil at time=0.050-s. The poloidal variation of

running load at that time step is shown in Fig.-6. At other time steps, the peak
running load for the Type-B coil decreases by about 8%.

The peak load in the leads area at time=0.50-s is 91-, 92-, and 67-lb/in for the
Type-A, -B, and –C coils respectively. Figure 7 shows the distribution along the
conductor from the winding pack, which is supported by the lead blocks, to the
terminal lug attachment, which is unsupported. In the 4.1-in long unsupported
region, the maximum running load is 34-lb/in for Type-B coil. This corresponds to a
conductor stress of 30-ksi, which is less than the allowable based on testing [7].

5. Summary
The results indicate that for the complete coil set operating at 2-T, the
electromagnetic loads on the leads are no worse than for the C1 coil test, and the
peak stress in the conductor is less than the allowable. If non-coaxial buswork is
required to route the leads from the assembly shown on drawing SE142C-050, then
the analysis should be extended to determine the required supports.

6. Attachments
Input files are located at:
ftp://ftp.pppl.gov//priv/bob-simmons+sig03/Williamson/Job1416
 field3.py – source code for field calculator
 force3.py – source code for force calculator
 case_c1.prp – input file for coil C1, 36,580-A/turn
 case_050.prp – input file for all mod coils, TF, and PF at time=0.050-s

7. References
 [1] Modular Coils Design Description, May-2004

http://ncsx.pppl.gov/NCSX_Engineering/Technical_Data/SDDs/
040519_FDR_SDDs/SDD_WBS14_040510.doc

 [2] MCWF Final Design Review, May 19-20, 2004
http://ncsx.pppl.gov/Meetings/FDR_2004/FDR_htm/NCSX_Final_Design_Review.html

 [3] NCSX Coil Technical Data
 http://ncsx.pppl.gov/SystemsEngineering/Requirements/Specs/

GRD/Rev4/C08R00_C8_TDS.pdf
[4] W.D. Cain, MAGFOR- A Magnetics Code to Calculate Fields and Forces
 in Twisted Helical Coils of Constant Cross Section, Sym Fusion Engr, 1984.

 [5] ANSYS Ver 11.0 User Manual, ANSYS Inc, Canonsburg, PA
 [6] G. Gettelfinger, C1 Coil Test Report, Jun-2006

http://ncsx.pppl.gov/NCSX_Engineering/R&D_Results/PPPL/C1%20Testing/
Analysis%20results/C1%20Test%20Results_Final.pdf

 [7] I. Zatz, Interim Material Properties, Dec-2003
http://ncsx.pppl.gov/NCSX_Engineering/R&D_Results/CTD/
031212_MatProps_140_IJZ.doc

Fig.-1 Modular Coil Leads Assembly

Fig.-2 Coil and Leads Finite Element Model

Table-1 Coil Currents for 2-T High Beta Scenario

Fig.-3 EM Load for Single Type-C Coil (MAGFOR)

Fig.-4 Conductor EM Load (MAGFOR)

Fig.-5 Lugs EM Load (MAGFOR)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 10 20 30 40 50 60 70 80 90 100

Poloidal Dimension

W
in

di
ng

 P
ac

k
R

un
ni

ng
 L

oa
d

(lb
/in

)

A
B
C

Fig.-6 Poloidal Variation of Running Load at Time=0.050-s

Fig.-7 Running Load

Fig.-8 Stress in Unsupported Conductor

Appendix A – Program for Field Calculation

field.py - mag field due to line currents
cmd: python field.py model.prp >field.out
import sys
from math import sqrt

read ansys input
f=open(sys.argv[1],'r')
nodelist=[]
elemlist=[]
cur=0.
for line in f:
 if line[0:2]=='N,':
 cols=line.split(',')
 nodelist.append(int(cols[1]))
 nodelist.append(float(cols[2])*0.0254)
 nodelist.append(float(cols[3])*0.0254)
 nodelist.append(float(cols[4])*0.0254)
 elif line[0:2]=='R,':
 cols=line.split(',')
 cur=float(cols[2])
 elif line[0:2]=='EN':
 cols=line.split(',')
 elemlist.append(int(cols[1]))
 elemlist.append(int(cols[2]))
 elemlist.append(int(cols[3]))
 elemlist.append(cur)
f.close()

set gauss points
w=[-0.3399810436,0.6521451548,0.3399810436,0.6521451548, \
 -0.8611363116,0.3478548541,0.8611363116,0.3478548451]

set field to zero
bn=[0.]*len(nodelist)

loop thru elements
for i in range(0,len(elemlist),4):
 #
 # end nodes
 x1=[]
 x2=[]
 for j in range(0,len(nodelist),4):
 if nodelist[j]==elemlist[i+1]:
 x1.append(nodelist[j+1])
 x1.append(nodelist[j+2])
 x1.append(nodelist[j+3])
 elif nodelist[j]==elemlist[i+2]:
 x2.append(nodelist[j+1])
 x2.append(nodelist[j+2])
 x2.append(nodelist[j+3])
 #
 # elem length
 lx=x2[0]-x1[0]
 ly=x2[1]-x1[1]
 lz=x2[2]-x1[2]
 le=sqrt(lx**2+ly**2+lz**2)
 #
 # current vector
 jx=elemlist[i+3]*lx/le
 jy=elemlist[i+3]*ly/le
 jz=elemlist[i+3]*lz/le
 #
 # loop thru integration pnts
 for j in range(0,len(w),2):
 #
 # gauss point coord

 x3=[]
 h1=0.5*(1.-w[j])
 h2=0.5*(1.+w[j])
 x3.append(h1*x1[0]+h2*x2[0])
 x3.append(h1*x1[1]+h2*x2[1])
 x3.append(h1*x1[2]+h2*x2[2])
 cst=-1.e-7*w[j+1]*le/2.
 #
 # loop thru nodes
 for k in range(0,len(nodelist),4):
 #
 # dist to gauss point
 dx=nodelist[k+1]-x3[0]
 dy=nodelist[k+2]-x3[1]
 dz=nodelist[k+3]-x3[2]
 rr=sqrt(dx**2+dy**2+dz**2)
 r3=rr*rr*rr
 #
 # field component
 bn[k]=nodelist[k]
 bn[k+1]+=cst*(jz*dy-jy*dz)/r3
 bn[k+2]+=cst*(jx*dz-jz*dx)/r3
 bn[k+3]+=cst*(jy*dx-jx*dy)/r3

field results
nmx=1
bmx=0.
for i in range(0,len(nodelist),4):
 bmo=sqrt(bn[i+1]**2+bn[i+2]**2+bn[i+3]**2)
 print bn[i],bn[i+1],bn[i+2],bn[i+3],bmo
 if bmo >= bmx:
 nmx=bn[i]
 bmx=bmo
print 'node, bmax:',nmx,bmx

Appendix B – Program for Force Calculation

force.py - force due to line current
cmd: python force.py model.prp field.inp >force.out
note: remove "node, bmax:" line from field output
import sys
from math import sqrt

read ansys input
f=open(sys.argv[1],'r')
nodelist=[]
elemlist=[]
cur=0.
for line in f:
 if line[0:2]=='N,':
 cols=line.split(',')
 nodelist.append(int(cols[1]))
 nodelist.append(float(cols[2])*0.0254)
 nodelist.append(float(cols[3])*0.0254)
 nodelist.append(float(cols[4])*0.0254)
 elif line[0:2]=='R,':
 cols=line.split(',')
 cur=float(cols[2])
 elif line[0:2]=='EN':
 cols=line.split(',')
 elemlist.append(int(cols[1]))
 elemlist.append(int(cols[2]))
 elemlist.append(int(cols[3]))
 elemlist.append(cur)
f.close()

read field at nodes
f=open(sys.argv[2],'r')
bn=[]
for line in f:
 cols=line.split()
 bn.append(int(cols[0]))
 bn.append(float(cols[1]))
 bn.append(float(cols[2]))
 bn.append(float(cols[3]))
f.close()

set gauss points
w=[-0.3399810436,0.6521451548,0.3399810436,0.6521451548, \
 -0.8611363116,0.3478548541,0.8611363116,0.3478548451]

set force to zero
fe=[0.]*len(elemlist)

loop thru elements
for i in range(0,len(elemlist),4):
 # fe[i]=elemlist[i]
 #
 # end nodes
 x1=[]
 x2=[]
 for j in range(0,len(nodelist),4):
 if nodelist[j]==elemlist[i+1]:
 x1.append(nodelist[j+1])
 x1.append(nodelist[j+2])
 x1.append(nodelist[j+3])
 elif nodelist[j]==elemlist[i+2]:
 x2.append(nodelist[j+1])
 x2.append(nodelist[j+2])
 x2.append(nodelist[j+3])
 #
 # field at end nodes
 b1=[]
 b2=[]

 for j in range(0,len(nodelist),4):
 if bn[j]==elemlist[i+1]:
 b1.append(bn[j+1])
 b1.append(bn[j+2])
 b1.append(bn[j+3])
 elif bn[j]==elemlist[i+2]:
 b2.append(bn[j+1])
 b2.append(bn[j+2])
 b2.append(bn[j+3])
 #
 # elem length
 lx=x2[0]-x1[0]
 ly=x2[1]-x1[1]
 lz=x2[2]-x1[2]
 le=sqrt(lx**2+ly**2+lz**2)
 fe[i]=le
 #
 # current vector
 jx=elemlist[i+3]*lx/le
 jy=elemlist[i+3]*ly/le
 jz=elemlist[i+3]*lz/le
 #
 # loop thru integration pnts
 for j in range(0,len(w),2):
 #
 # field at gauss pnt
 h1=0.5*(1.-w[j])
 h2=0.5*(1.+w[j])
 bx=h1*b1[0]+h2*b2[0]
 by=h1*b1[1]+h2*b2[1]
 bz=h1*b1[2]+h2*b2[2]
 cst=w[j+1]*le/2.
 #
 # force component
 fe[i+1]+=cst*(jy*bz-jz*by)
 fe[i+2]+=cst*(jz*bx-jx*bz)
 fe[i+3]+=cst*(jx*by-jy*bx)

force results
emx=1
fmx=0.
for i in range(0,len(elemlist),4):
 fm=sqrt(fe[i+1]**2+fe[i+2]**2+fe[i+3]**2)
 xl=fe[i]*4.448*39.370
 print elemlist[i],fe[i+1],fe[i+2],fe[i+3],fm/xl
 if fm/xl >= fmx:
 emx=elemlist[i]
 fmx=fm/xl
print 'elem, fmax:',emx,fmx

		2008-09-08T11:54:00-0400
	David Williamson

		2008-09-08T11:58:29-0400
	Kevin Freudenberg

