To:L. DudekFrom:W. Blanchard

Subject: Closeout Summary for NSCX Vacuum Pumping System (WBS22)

<u>Scope</u>

The project scope consisted of a high vacuum pumping system which would be remotely controlled and monitored and included two 1500 l/sec TMPs, two isolation valves, and a vertical pumpduct connected to a transition duct off of one of the neutral beam ports. The TMPs would be backed by existing mechanical pumps. The system would also contain an RGA system, gauging and a roughing line between an existing mechanical pump and the vacuum vessel. The scope included the design, fabrication, installation, and system testing of equipment needed to implement the vacuum pumping system and would utilize major components from PPPL legacy equipment including the TMPs, backing pumps, roughing pump and TMP isolation valves. Possible upgrades included one (or two) additional pumpduct and TMPs connected to one (or both) of the remaining NB transition ducts if required by the project.

<u>Status</u>

This project was in the early design phase and there had not been a PDR.

Interfaces

The only interface for this system was a neutral beam transition duct.

Specification

This work was in the early phase of development and the general requirements were in the GRD.

Schematics

No formal approved schematics or PIDs had been generated for this project at the time of closeout.

Models

No formal approved models had been generated for this project.

Drawings

No formal approved drawings had been generated for this project.

<u>Analysis</u>

A preliminary calculation of the pumping speed was completed (Attached).

Testing

Tests were run on the TMPs and backing pumps to ensure they were in working order.

<u>Costs</u> There are no pending cost updates for this WBS – the latest Lehman Review data (April 2008) is attached.

Remaining Work

There is no remaining work required to close this project out.

Lessons Learned: NONE

<u>Conclusions:</u> NONE, except that legacy equipment may not be available for reuse at a later date.

NCSX Pumping Speed

Note: All pumping speeds and conductances are for air and in l/s $1/C_T = 1/C_1 + 1/C_2 + \dots + 1/C_n$ (for conductances and pumps in series) $C_T = C_1 + C_2 + \dots + C_n$ (for conductances and pumps in parallel) Reference: A. Roth, Vacuum Technology 3rd Edition

Effective pumping speed of 2 TMPs in parallel to the large pumpduct

	1st pump to 24" main duct	2nd pump up to 24" main duc			
TMP=	1,450	1,450			
Component	TIV	TIV			
Conductance diameter in inches=	10.0	10.0			
Conductance length in inches=	5.5	5.5			
Conductance =	14,196	14,196			
Component	Elbow and Spool Piece	Elbow and Spool Piece			
Conductance diameter in inches=	13.5	13.5			
Conductance length in inches=	32.0	32.0			
Conductance=	6,003	6,003			
Effective pumping speed of each TMP to duct=	1,079	1,079			

Effective pumping speed of 2 TMPs in parallel to main duct $(S_1) = 2,158$

Calculation of conductances in series

Component Conductance diameter in inches=	Vertical 24" duct 23.25
Conductance length in inches= Conductance=	90 10,903
Component	Transition to NB duct
Conductance diameter in inches=	13.5
Conductance length in inches=	22
Conductance=	8,732
Component	Vertical part of NB duct
Length of 1st side in inches=	13.5
Length of 2nd side in inches=	20.0
Conductance length in inches=	17
Conductance=	29,848

Component	Horizontal part of NB duct
Length of 1st side in inches=	13.5
Length of 2nd side in inches=	33
Conductance length in inches=	10
Conductance =	99,522
Component	NB port spool piece extension
Conductance diameter in inches=	23
Conductance length in inches=	23
Conductance =	41,303
Component	NB port spool piece
Conductance diameter in inches=	23
Conductance length in inches=	6
Conductance =	158,330

Effective conductance of components in series from 24" main duct to the VV (C_1) = 3567

Approximate effective NCSX pumping speed $\{S_{eff}=(S_{1*} C_1)/(S_1+C_1)\} = 1,345$

NCSX Vacuum Pumping Systems

W. Blanchard WBS 22 Manager

SC Project Review of NCSX, April 8-10, 2008

Requirements

• Minimum effective pumping speed of 1300 l/s

Interfaces

 Design consists of one pumping duct off of one NB transition piece and a vertical 24" duct

Design Features

- Two legacy 1500 l/s TMPs
- System monitored, controlled and interlocked using a PLC
- Differentially pumped RGA

pact Stellarator Experiment		\$	Hours									
Task ID		M&S	EMEM	EMSM	EMSB	EMTB	EAEM	EASB	EEM	EESM	EESB	EETB
Title I and II Design												
Preliminary Design / Management / Admin												
Engr Work Planning & Des		sign	180									
	Design Hardware				80							
	Design PLC Controls								336			
	Testing Equipment				88							
	Drafting Support (Electrica	al)					160					
	Drafting Support (Mechani	cal)					20					
Final Design / Management	/ Admin											
	Engr Work Planning & De	sign	220									
	Mechanical Design				88							
	Design PLC Controls								336			
	Electrical Design								64			
	Electrical Design/Drafting							272				
	Drafting Support (Mechani	cal)						60				
Subtotal Title	I & II Design		400	0	256	0	180	332	736	0	0	0
Title III												
	Engr Work Planning & De	sign	120									
	Maint/Repair Mech Pumps	3			80							
	Repair/Cal. Instrumentatio			80								
	Electrical Installation					668						
	Fabricate/Install Hardware			120	520							
	Fabricate/Install PLC Controls Integrated System Testing								352			
									80			
	Materials and Supplies	\$ 118,000										
Subtotal Title III		\$ 118,000	160	0	280	1188	0	0	432	0	0	0

Cost Estimate

- ***** Based on NSTX costs for system which is similar to the proposed NCSX design
- * Input from engineers and personnel familiar with various parts of the project

	Activity	Activity MILE Activity			SHIFTS	Forecast	Forecast	Total	Cost to					
	D	-STONE	Description	(work		Start	Finish	Float	Complete	FY08	FY09	FY10	FY11	FY12
		LEVEL		days										
2	2 - Torus Vac	cuum P	umping Systems											
,	lob: 2201 - Va	acuum	Pumping Systems-BLANCHARD											
	220-101		Preliminary Design	83		01OCT08*	05FEB09	361	126,871.80		em//em=1 ee//em=33	80; em//sb=168; ea//sb 36;	=180	
	220-105		PDR VPS	1		06FEB09	06FEB09	361	0.00					
	220-109		Final Design	80		09FEB09	01JUN09	361	147,786.60		ee/,	'em=368; ea//sb=332; '/em=220; em//sb=88:e	e//em=32	
	220-113		FDR VPS	1		02JUN09	02JUN09	361	0.00					
	220-117		Procure PLC, Values, Hardware	87		01OCT09*	12FEB10	277	157,766.00			41=118k ;		
	220-133		Fabrication and Assemble	154		01SEP10*	15APR11	50	205,043.31		em//tb=1188; en	v//sb=280;ee//em=352		
	220-137		Test VPS Hardware	3		05JUL11	07JUL11	1	21,609.20			em//en	=40; ee//em=80	
	220-116		Title III	463		03JUN09	13APR11	893	20,285.49				EM//EM	=120hr ;
-	M	n:	-8											

<u>Project Schedule</u> •Design in FY09, procurements in FY10 and fabrication/installation in FY11

Un	certainty	of the Es	stimate											
						<u>Uncertainty</u>								
			<u>High</u>	<u>Medium</u>	Low	<u>Range (%)</u>					<u>Comm</u>	nents/Othe	r Conside	rations
	Design M	aturity			Х		There ha	ve been n	o design r	eviews th	erefore th	e design i	s not fixed	l.
						-15%/+25%								
	Design C	omplexity			X		Anticipate	ed to only	require st	andard co	mponent	5		
	Other Co	mments:												

Risk Assessment: Low

Risk:

* Equipment or component failure

Mitigation:

* All components outside of coils and cryostat and easily accessible

* Standard equipment and hardware

* Replacement parts for major components in-house

