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Presentation outline
• Introduction

− Why build a compact stellarator?

• Component description:
For each major component
− What are the requirements?
− What is our current concept?
− What are the issues?

• Machine assembly

• Manufacturing studies, R&D

• Summary
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Why build a compact stellarator?

• Compact stellarators have tremendous promise, combining 
the best features of tokamaks and stellarators:

− High beta (>4%) stability
− Excellent confinement
− No tokamak-like disruptions (no VDEs, much smaller plasma current)
− No current drive required for steady state operation
− No conducting wall or feedback system required to stabilize external 

kink modes
− Vertical stability without a conducting wall or feedback system, even in 

highly elongated plasma configurations
− Low aspect ratio resulting in high power density and improved 

economics

• Compact stellarators require 3-D shaping of the last closed 
magnetic flux surface, and a small bootstrap current to 
provide a fraction of the rotational transform.
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NCSX Stellarator Core concept
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NCSX Basic parameters

2 (TBD) Bmax, from mod coils (T)

18No. of Modular coils

+/- 0.5 T, 1/R (18)
0.17 T in ref scenario

TF coil configuration (no.)

5No. of PF coil pairs

1.4Major radius (m)

CFC / divertor panels close 
to VV wall

PFC configuration

Tang., radial, vertical
Radial and vertical

Ports: @ v = 0 (0 deg)
@ v = ½ (60 deg)

Inboard @ v = ½ RF launcher options

ValueParameter
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Modular coil requirements

• Meet performance requirements
− 1.7 T scenario with 0.46s flattop
− 1.2 T scenario with 1.24s flattop
− 2.0 T with reduced pulse length
− 15 minute rep rate (5 minute rep rate for short pulse)

• Provide flexibility
− Independent control of modular and PF coils provided
− Variable background TF field

• +/- 1.5 mm assumed for installed winding accuracy

• Coils must provide access for tangential NBI, RF, vacuum 
pumping, diagnostics, and personnel access

• Limit conductor current to ~ 24 kA peak to match with 
existing TFTR power supplies
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Modular coil configuration

• 18 coils, 3 field periods

• Optimized for physics 
performance consistent with NBI 
access and engineering 
constraints.

• Coils wound with flexible cable 
conductor into cast-and-machined 
forms

• Coils pre-cooled to LN2
temperature to allow high current 
density
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Coil geometry optimized for 
physics and engineering properties

• COILOPT and STELLOPT codes merged, so plasma and 
coils are optimized simultaneously

• Incorporation of engineering constraints in optimizer has 
improved winding properties

− Smoother winding surface
− More space between coils (lower current density)
− More clearance to plasma
− More clearance for NBI
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Example of coil improvement using 
optimization codes and engr. constraints

Case 1102 (blue)

Case 0620 (red)

Interference with 
expanded vessel

Small radius 
of curvature

Insufficient space 
between coils 
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Continuous shell forms robust structure

• Shell consists of individual 
modular coil forms that are 
bolted together

• Penetrations for access are 
provided wherever needed

• Preliminary stress analysis of 
shell has been performed

− Stresses are well within 
allowables except for a few 
localized “hot spots”

− Local problems can be solved 
with minor changes in local 
thickness
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Modular coils wound with flexible cable 
directly on coil structure

Parameters:
• Coil Envelope = 2 x 110 x 40 mm
• Current / Coil = 649-kA @ 2-T
• Number of Turns = 32
• Nominal current / turn = 20.3  kA
• Conductor Size = 13 x 16 mm
• Net Current Density = 13-kA/cm2
• Total peak power ~ 40 MW

Flexible cable used to wind coil



12

Cable insulation scheme



1377”

Modular coil manufacturing sequence

Rough casting Features are 
machined

Conductor 
wound directly 
into structure

Auxiliary 
support 
clamps are 
installed

• Continuous support for strength and accuracy of windings
• Shell segments repeat 6 times

note: PVR geometry
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Modular coil-form castings are 
within present state-of-the-art
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Modular coil winding process

Conductor 
on spool

Winding form

Conductor unrolled 
from spool and 
placed onto form 
(by hand)
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Modular coil accuracy requirement 
based on current center of winding

theoretical geometry possible geometry

Winding 
form

Winding
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The vacuum vessel must fit inside 
the modular coil set

PVR illustration

Vacuum vessel
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Vacuum vessel requirements

• Vessel must be bake-able to 150 C

• Low permeability (< 1.02 nominal goal)

• Provide as large a volume as possible for plasma shape flexibility 
and power and particle handling systems, consistent with 
assembly of modular coils

• Provide support for internal components such as internal liner, 
trim coils, magnetic sensors

• Provide access ports for diagnostics, vacuum pumping, heating 
systems, and personnel access
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Vacuum vessel design concept

• Shell material Inconel 625

• Thickness .375 inch

• Time constant < 10 ms

• Total wt w/ports ~ 12000 lbs

• Bolted joints connect field periods

• Traced with He gas lines for heating 
(to 150C) and cooling

• Combination Microtherm and 
Solomide foam insulation between 
VV and cold mass
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Access for tangential NBI

• Up to 4 neutral beams 
in combinations of co-
and counter-

• Vacuum pumping 
through NB ducts
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RF launchers accommodated
+ radial access at v = ½ planes

“spacer” at VV joint 

for radial diagnostic views

RF launcher array 

Inboard around v = ½ plane
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Diagnostic and personnel access

• 90 separate ports for ~100 different diagnostics
− The number and sizes of ports appear to match diagnostic requirements
− Geometric requirements for specific diagnostics are being addressed
− Ports are stellarator symmetric

• Personnel access available through NBI or other large ports

381 mm

775 mm

445 mm
Diameter
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New coil set has improved access 
for maintenance

0.38 x 0.78 m port, 6 places 
for maintenance and 
reconfiguration access
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Vessel fabrication options include: 
press forming, explosion forming, 
or casting

Individual panels

Half field period

Full field period with port stubs

Half field period repeats 6 times 
to form complete shell

PVR illustrations
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PFC requirements

− Basic requirements 
• Initial system configured for ohmic operation
• Accommodates carbon surfaces, bakeable to 350C
• Staged to include NBI armor, trim coil armor, inboard 

limiter / coverage, divertor plates, energetic ion loss armor
• Geometry insures long connection length (> 120 m) for 

field lines
• Provide penetrations, accommodate in-vessel diagnostics 

mounted on VV

− Ultimate capability
• Full coverage of surfaces with carbon
• 12 MW for 1.2 s
• Provision for divertor baffles and pumping
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PFC design concept

• Staged implementation planned
− Initial coverage with low Z tiles mounted on 

poloidal ribs to form array of poloidal limiters
− Panels for NB armor and divertor region will 

be provided for initial auxiliary heating

• Full coverage provided by mounting molded 
carbon fiber composite (CFC) panels on 
poloidal ribs

− Panel size based on advice from  BFG 
aerospace (~ 60 cm square, 1 cm thick)

• Ribs are separately cooled / heated with He 
gas for bakeout (350C) and normal 
operation

• Ribs are registered toroidally  to VV but 
allowed to grow radially and vertically

Poloidal ribs

CFC panels mounted on poloidal ribs

PVR illustration
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PFC envelope maximized inside vessel

• PFC envelope is pushed out to vessel wall to provide maximum 
plasma shape flexibility

• Divertor envelope is still evolving, but baffles for neutral particle 
control will be accommodated

PFC envelope with plasmaPFC envelope
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Field lines tend to stay in FW 
region except in “bean tips”

Vacuum 
vessel

PFC 
panels

Vacuum 
vessel

PFC 
panels
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TF Coils
• 18 coils provide +/- 0.5 T
• Supported from modular coil shell
• Wound from hollow copper conductor
• Pre-cooled to LN2 temperature (like 

modular coils)

Lateral 
Support
Clamps

Crown
Structure
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PF Coils

• 5 pairs of PF coils provide 
inductive current drive and physics 
flexibility

• Require ~2 V-s to drive 350 kA 
plasma current

• PF coils located outside modular 
and TF coils, supported off shell 
structure

• Wound from hollow copper 
conductor, glass-epoxy insulation

• Pre-cooled to LN2 temperature (like 
modular and TF coils)
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Trim coils
• Provided to mitigate field errors on m=5 and m=6 resonant surfaces
• Located close to inboard v=0 cross-section
• Must accommodate coils at outboard midplane 
• Mounted off vacuum vessel, behind PFCs 
• Canned for vacuum compatibility

PVR illustrations
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Cryogenic coils enclosed in a common 
cryostat

• Cryostat design uses commercial 
concept - substructure sprayed 
with urethane foam

• Inexpensive construction facilitates 
maintenance access

• Holes provided for all vacuum 
vessel port extensions

• Silicon rubber “Gortiflex” boots to 
seal between vessel port 
extensions and cryostat

• 8” thickness reduces heat leaks to 
air but still will require local 
heaters/blowers to avoid 
condensation

~3.1 m

~ 4.6 m
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Modular and TF coils and VV will be 
pre-assembled in field periods

• Pre-assembly can be performed in TFTR test cell or NCSX test cell

Rotate modular coils over 
vacuum vessel ½ period

Add TF coils and out-of-
plane support structure

Add vacuum vessel port 
extensions to complete 

field period sub-assembly



34

Field periods are assembled on 
machine structure in NCSX test cell

Field period lowered onto 
machine base in position 

~ 500 mm radially outward

3 field periods in 
position prior to radial 

assembly step

Field periods connected 
after radial motion, PF 

coils raised/lowered into 
position
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Manufacturing studies
• Vacuum Vessel and Modular Coils are most difficult challenges 

from manufacturing and cost viewpoint

• Input has always been solicited from industry, but now we will 
fund industry to participate

• 8 different proposals will be funded to perform manufacturing 
studies (vendors selected Nov 13)
− 3 integrated modular coils manf studies
− 3 integrated vacuum vessel manf studies
− 2 studies devoted to castings, covering both the modular coils 

and vacuum vessel

• Manufacturers will recommend a manufacturing process, suggest 
design modifications and needed R&D, schedule, and budgetary 
cost
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R&D is planned to reduce risk

• Vacuum Vessel
− Partial prototypes using different processes
− Full scale prototype of half field period using 

selected process

• Modular Coils
− Epoxy impregnation tests
− Winding tests on full scale form
− Machining simulations
− Full scale prototype coil
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Near term winding / potting R&D
• Propose to create one or more full scale winding packs, or “logs” 

in straight length of about 24 to 30 inches
• Sections could be taken to determine quality of epoxy fill
• “log” could be loaded in various ways to determine composite 

stiffness in tension, compression and bending for use in FEA 
models

• Cooling can also be tested

.
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Summary
• NCSX design concept has been developed that meets 

performance requirements

− Modular coil set that meets physics and engineering 
constraints

− Shell structure is robust and provides needed accuracy
− Large vacuum vessel with numerous ports provides adequate 

access for heating, diagnostics and maintenance.
− TF, PF, and trim coils for flexibility 

• Manufacturing study subcontracts will provide industrial 
input improving design/fabrication of modular coils and 
vacuum vessel

• Project is on track for a conceptual design review in May, 
2002


