NCSX Stellarator Core

B. Nelson for the NCSX team

19th Symposium on Fusion Engineering January 23, 2001 Atlantic City, New Jersey

Presentation outline

- Introduction
 - Why build a compact stellarator?
- Component description:
 For each major component
 - What are the requirements?
 - What is our current concept?
 - What are the issues?
- Machine assembly
- Manufacturing studies, R&D
- Summary

Why build a compact stellarator?

- Compact stellarators have tremendous promise, combining the best features of tokamaks and stellarators:
 - High beta (>4%) stability
 - Excellent confinement
 - No tokamak-like disruptions (no VDEs, much smaller plasma current)
 - No current drive required for steady state operation
 - No conducting wall or feedback system required to stabilize external kink modes
 - Vertical stability without a conducting wall or feedback system, even in highly elongated plasma configurations
 - Low aspect ratio resulting in high power density and improved economics
- Compact stellarators require 3-D shaping of the last closed magnetic flux surface, and a small bootstrap current to provide a fraction of the rotational transform.

NCSX Stellarator Core concept

NCSX Basic parameters

Parameter	Value
Major radius (m)	1.4
Bmax, from mod coils (T)	2 (TBD)
No. of Modular coils	18
No. of PF coil pairs	5
TF coil configuration (no.)	+/- 0.5 T, 1/R (18) 0.17 T in ref scenario
RF launcher options	Inboard @ v = ½
Ports: @ v = 0 (0 deg) @ v = ½ (60 deg)	Tang., radial, vertical Radial and vertical
PFC configuration	CFC / divertor panels close to VV wall

Modular coil requirements

- Meet performance requirements
 - 1.7 T scenario with 0.46s flattop
 - 1.2 T scenario with 1.24s flattop
 - 2.0 T with reduced pulse length
 - 15 minute rep rate (5 minute rep rate for short pulse)
- Provide flexibility
 - Independent control of modular and PF coils provided
 - Variable background TF field
- +/- 1.5 mm assumed for installed winding accuracy
- Coils must provide access for tangential NBI, RF, vacuum pumping, diagnostics, and personnel access
- Limit conductor current to ~ 24 kA peak to match with existing TFTR power supplies

Modular coil configuration

- 18 coils, 3 field periods
- Optimized for physics performance consistent with NBI access and engineering constraints.
- Coils wound with flexible cable conductor into cast-and-machined forms
- Coils pre-cooled to LN₂ temperature to allow high current density

Coil geometry optimized for physics and engineering properties

- COILOPT and STELLOPT codes merged, so plasma and coils are optimized simultaneously
- Incorporation of engineering constraints in optimizer has improved winding properties
 - Smoother winding surface
 - More space between coils (lower current density)
 - More clearance to plasma
 - More clearance for NBI

Example of coil improvement using optimization codes and engr. constraints

Small radius of curvature

Interference with _ expanded vessel

Continuous shell forms robust structure

- Shell consists of individual modular coil forms that are bolted together
- Penetrations for access are provided wherever needed
- Preliminary stress analysis of shell has been performed
 - Stresses are well within allowables except for a few localized "hot spots"
 - Local problems can be solved with minor changes in local thickness

Modular coils wound with flexible cable directly on coil structure

Cable insulation scheme

Modular coil manufacturing sequence

- Continuous support for strength and accuracy of windings
- Shell segments repeat 6 times

Rough casting

Features are machined

Conductor wound directly into structure Auxiliary support clamps are installed

Modular coil-form castings are within present state-of-the-art

Pulper Rotor Alloy: Grade 318 (Modified CF8M) Casting Weight: Appx 6,500 lb. Size: 6 ft. Dia, 8 ft. High

W7-X Coll Winding Form Alloy: G-X2CrNiMoN 18 14 Vertical Pump Impeller Alloy: ASTM A743 CD4MCU Cast Weight: Appx 8,000 lb. Size: 5 ft. Dia, 4.5 ft. High

Coll Winding Form Alloy: ASTM A351 CF8M (TBD) Casting Weight: Appx 3,000 lb. Size: 81 in. Tall, 77 in. Wide

Modular coil winding process

Modular coil accuracy requirement based on current center of winding

theoretical geometry

possible geometry

The vacuum vessel must fit inside the modular coil set

PVR illustration

Vacuum vessel requirements

- Vessel must be bake-able to 150 C
- Low permeability (< 1.02 nominal goal)
- Provide as large a volume as possible for plasma shape flexibility and power and particle handling systems, consistent with assembly of modular coils
- Provide support for internal components such as internal liner, trim coils, magnetic sensors
- Provide access ports for diagnostics, vacuum pumping, heating systems, and personnel access

Vacuum vessel design concept

Inconel 625

- Shell material
- Thickness .375 inch
- Time constant < 10 ms
- Total wt w/ports ~ 12000 lbs
- Bolted joints connect field periods
- Traced with He gas lines for heating (to 150C) and cooling
- Combination Microtherm and Solomide foam insulation between VV and cold mass

Access for tangential NBI

- Up to 4 neutral beams in combinations of coand counter-
- Vacuum pumping through NB ducts

RF launchers accommodated + radial access at $v = \frac{1}{2}$ planes

Diagnostic and personnel access

- 90 separate ports for ~100 different diagnostics
 - The number and sizes of ports appear to match diagnostic requirements
 - Geometric requirements for specific diagnostics are being addressed
 - Ports are stellarator symmetric
- Personnel access available through NBI or other large ports

New coil set has improved access for maintenance

Vessel fabrication options include: press forming, explosion forming, or casting

Full field period with port stubs

Half field period repeats 6 times to form complete shell

PVR illustrations

PFC requirements

- Basic requirements
 - Initial system configured for ohmic operation
 - Accommodates carbon surfaces, bakeable to 350C
 - Staged to include NBI armor, trim coil armor, inboard limiter / coverage, divertor plates, energetic ion loss armor
 - Geometry insures long connection length (> 120 m) for field lines
 - Provide penetrations, accommodate in-vessel diagnostics mounted on VV
- Ultimate capability
 - Full coverage of surfaces with carbon
 - 12 MW for 1.2 s
 - Provision for divertor baffles and pumping

PFC design concept

Poloidal ribs

- Staged implementation planned
 - Initial coverage with low Z tiles mounted on poloidal ribs to form array of poloidal limiters
 - Panels for NB armor and divertor region will be provided for initial auxiliary heating
- Full coverage provided by mounting molded carbon fiber composite (CFC) panels on poloidal ribs
 - Panel size based on advice from BFG aerospace (~ 60 cm square, 1 cm thick)
- Ribs are separately cooled / heated with He gas for bakeout (350C) and normal operation
- Ribs are registered toroidally to VV but allowed to grow radially and vertically

CFC panels mounted on poloidal ribs

PFC envelope maximized inside vessel

- PFC envelope is pushed out to vessel wall to provide maximum plasma shape flexibility
- Divertor envelope is still evolving, but baffles for neutral particle control will be accommodated

PFC envelope

PFC envelope with plasma

Field lines tend to stay in FW region except in "bean tips"

TF Coils

- 18 coils provide +/- 0.5 T
- Supported from modular coil shell
- Wound from hollow copper conductor
- Pre-cooled to LN₂ temperature (like modular coils)

PF Coils

- 5 pairs of PF coils provide inductive current drive and physics flexibility
- Require ~2 V-s to drive 350 kA plasma current
- PF coils located outside modular and TF coils, supported off shell structure
- Wound from hollow copper conductor, glass-epoxy insulation
- Pre-cooled to LN₂ temperature (like modular and TF coils)

Trim coils

- Provided to mitigate field errors on m=5 and m=6 resonant surfaces
- Located close to inboard v=0 cross-section
- Must accommodate coils at outboard midplane
- Mounted off vacuum vessel, behind PFCs
- Canned for vacuum compatibility

Cryogenic coils enclosed in a common cryostat

- Cryostat design uses commercial concept - Substructure sprayed with urethane foam
- Inexpensive construction facilitates
 maintenance access
- Holes provided for all vacuum vessel port extensions
- Silicon rubber "Gortiflex" boots to seal between vessel port extensions and cryostat
- 8" thickness reduces heat leaks to air but still will require local heaters/blowers to avoid condensation

Modular and TF coils and VV will be pre-assembled in field periods

• Pre-assembly can be performed in TFTR test cell or NCSX test cell

Rotate modular coils over vacuum vessel ½ period

Add TF coils and out-ofplane support structure

Add vacuum vessel port extensions to complete field period sub-assembly

Field periods are assembled on machine structure in NCSX test cell

Field period lowered onto machine base in position ~ 500 mm radially outward 3 field periods in position prior to radial assembly step Field periods connected after radial motion, PF coils raised/lowered into position

NCSX Stellarator Core Assembly Sequence

Manufacturing studies

- Vacuum Vessel and Modular Coils are most difficult challenges from manufacturing and cost viewpoint
- Input has always been solicited from industry, but now we will fund industry to participate
- 8 different proposals will be funded to perform manufacturing studies (vendors selected Nov 13)
 - 3 integrated modular coils manf studies
 - 3 integrated vacuum vessel manf studies
 - 2 studies devoted to castings, covering both the modular coils and vacuum vessel
- Manufacturers will recommend a manufacturing process, suggest design modifications and needed R&D, schedule, and budgetary cost

R&D is planned to reduce risk

- Vacuum Vessel
 - Partial prototypes using different processes
 - Full scale prototype of half field period using selected process
- Modular Coils
 - Epoxy impregnation tests
 - Winding tests on full scale form
 - Machining simulations
 - Full scale prototype coil

Near term winding / potting R&D

- Propose to create one or more full scale winding packs, or "logs" in straight length of about 24 to 30 inches
- Sections could be taken to determine quality of epoxy fill
- "log" could be loaded in various ways to determine composite stiffness in tension, compression and bending for use in FEA models
- Cooling can also be tested

Summary

- NCSX design concept has been developed that meets performance requirements
 - Modular coil set that meets physics and engineering constraints
 - Shell structure is robust and provides needed accuracy
 - Large vacuum vessel with numerous ports provides adequate access for heating, diagnostics and maintenance.
 - TF, PF, and trim coils for flexibility
- Manufacturing study subcontracts will provide industrial input improving design/fabrication of modular coils and vacuum vessel
- Project is on track for a conceptual design review in May, 2002