08July-08-PG

<i>TO</i> :	M. Cole
FROM:	P. L. Goranson

SUBJECT: Job 1270 - NCSX Heater Control System Closeout Summary

Scope

This effort covers all Title I, II, and III engineering design for a resistance heating temperature control system to maintain the NCSX inner port extension wall temperatures during standby and bake out operation. It includes monitoring of temperatures of the Vacuum Vessel body and the port extensions during standby and bake out operation. It includes transmission of temperature data to Central I & C for archival and interface to other disciplines.

Work includes engineering design, procurement, fabrication, and installation of leads, thermocouple signal conditioners, processors, heater controllers, racks, wire trays, and associated support hardware. Thermocouples and heater tapes are supplied by WBS 12

Status

At the time of closeout no work was in process.

Interfaces

Vacuum Vessel (12) Cryostat (WBS 17)

Specifications

No work had begun on a system requirements document or CSPEC.

All work to date was included in the SC Project Review of NCSX, April 8-10, 2008 and a presentation by Gernhardt entitled "NCSX Heater and Thermocouple-Instrumentation and Control", updated 10/25/07. (Both Attached).

Schematics

None except in documents listed above.

Models Completed None required.

Drawings

None started.

<u>Analyses</u> None required.

Testing

None required. MDL incorporated the design in one of its heating systems for a furnace with good results.

<u>Costs</u>

Cost estimates were updated on the latest WAF and were included in the 08 Lehmann review presentation.

Remaining Work

- The routing of wire trays. •
- Locating equipment. •
- Drawings and schematics. •

R&D was not required.

<u>Conclusion</u> The work was in a preliminary phase.

Attachments:

NCSX Heater Control System

P. L. Goranson Work package 1270

SC Project Review of NCSX, April 8-10, 2008

Outline

Updated 10/25/07 R. Gernhardt

- Scope
- Requirements
- System Proposed
- Configuration
- Component details
- M&S and Labor cost details
- Total Cost (M&S and Labor)
- Schedule
- Risk and Mitigation

Scope

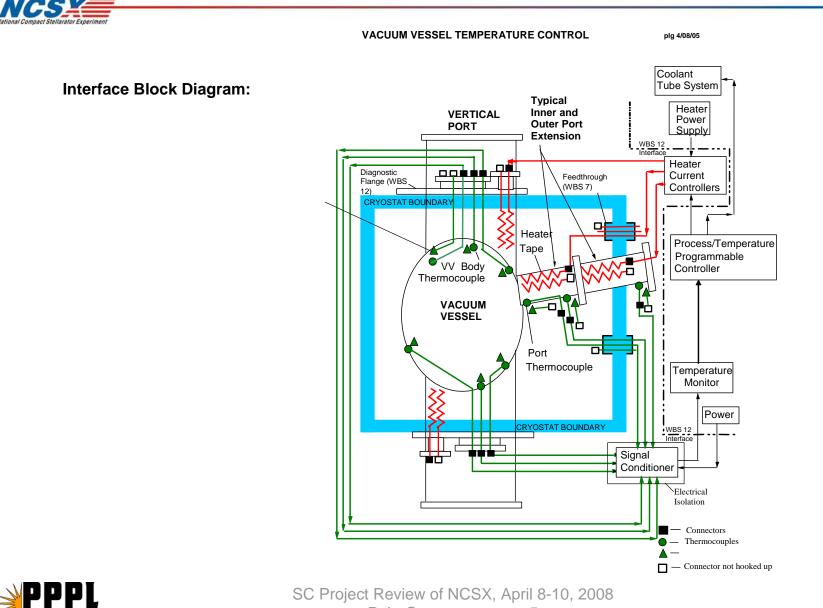
- Provide resistance heating temperature control system to maintain the NCSX inner port extension wall temperatures during standby and bake out operation.
- Monitor temperatures of the vacuum vessel body and port extensions during standby and bake out operation.
- Send temperature data to Central I & C for archival and interface to other disciplines.

Requirements-1

Criteria

- Monitor the VV temperature during standby and bake out operation.
- Operation range room temperature to 375 C
- The leads must be insulated from all structure including VV and Cryostat.
- The signal conditioners must be the isolated type. Additionally, the instrument cabinet will be isolated from ground by insulation and isolation transformers.
- Each heater must be capable of continuous variable operation from 0 200 watts.

Interfaces


- Provisions must be provided by WBS 171 for future hookup of additional thermocouples when outer port extensions are added. The interfacing electrical system must be capable of upgrade to accommodate the upgrade.
- WBS 12 will be responsible for overall design of the system including choice and location of components, mounting provisions, lead routing, signal conditioning, and electrical isolation.
- WBS 12 will be responsible for coordination of the thermocouple design with the other interfacing disciplines (WBS 171 and WBS 5).
- For purpose of assigning interface responsibility, the WBS 4 responsibility shall end at the power panel.

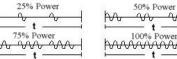
VSICS LORORO

System Proposed, page 1

- Provides for:
 - 120 Channels of Active Heater Temperature Control Zones
 - 114 heating control zones (channels) requested.
 - 282 Channels of Thermocouple monitoring points
 - 279 (expandable) temperature monitoring points requested.

System Proposed, page 2

- PLC based temperature control of heaters:
 - Rockwell Control Logix Platform
 - Networking
 - Control Net for PLC I/O and Local Programming/Control
 - TCP/IP interface to Central I&C for data exchange. May use Rockwell software.TBD
 - Ethernet/IP network for Remote system control operator interfaces.
 - Software
 - RSLogix 5000 PLC programming software. PC platform
 - RSView32 or SE MMI software---TBD . PC operator interface.



System Proposed, page 3

• Heater 120VAC control:

- Zero crossing Time Pulsed Output (TPO) solid state relay supplies variable 120VAC pulse train to heater.
 - TPO chosen to minimize RFI to diagnostics.

hor 25% Power

₳₽₳₽₳₽^{75%}₽°₩₽₳₽₳₽₳₽₳

- Phased output SSR's are noisy (i.e.. Standard lighting dimmers)
- Heater power limited by Variac.
- Secondary SSR protects for thermal runaway (shorted TPO control SSR).
- One or more thermocouples provide feedback for each heating zone PID loop.
 - Failed TC sets alarm, notifies operator and removes TC for heating zone mix allowing conditional heater zone control.

Sensor Specifications

• Thermocouples:

- Ref: NCSX-PRL-12-003-00
 - Type-E, Isolated, electrically floating junction Type-E, Isolated, electrically floating junction.
- Similar to type Omega XCIB-E-4-3-10.
- Heaters:
 - Manufacture: BriskHeat
 - BIH series tapes are constant resistance type.
 - Custom BIH Style Heating Tape: ¹/₂" W X 10 Ft. L, non-magnetic.
 - Heavy Insulated Heating Tape, 520 Total Watts, 24" Leads Same End, Split Plug, 120 Volt.
 - Custom BIH Style Heating Tape: ½" W X 6 Ft. L, non-magnetic.
 - Heavy Insulated Heating Tape, 310 Total Watts, 24" Leads Same End, Split Plug, 120 Volt

Control I/O M & S Costs

I/O M&S Total = \$211,262

	rator Experiment			1				-
NCS	X Heater/TC Instrumentation and Control Com	ponent Parts	<u>s List</u>					
	Provides for 120 Heaters and 282 Thermocouples							
Rev 1:	24 OCT 2007 R.Gernhardt							
ltem	Description	Mfgr	Model	unit cost	Qty	Item Cost	Comment	Source
	PLC							
1	Logix 5560 processor with 2 M memory. (Is 2M enough?)	Allen-Bradley	1756-L61	\$5,105.00	1	\$5,105.00	memory size???	Rumsey Electri
2	Control Logix Chassis, 10 slot	Allen-Bradley	1756-A10	\$542.00	8	\$4,336.00	TBD	Rumsey Electri
	Control Logix Power supply, 10 A	Allen-Bradley	1756-PA 72	\$805.00	8	\$6,440.00		Rumsey Electri
	Controlnet interface module	Allen-Bradley	1756-CNB	\$1,312.00	8	\$10,496.00		Rumsey Electri
	Control Logix Ethernet interface module	Allen-Bradley	1756-ENBT	\$1,760.00	1	\$1,760.00		Rumsey Electri
	MODBUS-TCP/IP communications module for 1756 chassis	ProSoft	MV156-MNET	\$2,228.00	1	\$2,228.00		Rumsey Electri
	Control Logix Enhanced Isolated TC module, 6 Channel	Allen-Bradley	1756-IT6I2	\$1,915.00	47	\$90,005.00		Rumsey Electri
	Interface module for above 1756-IT6I2	Allen-Bradley	1492-AIFM 6TC-3	\$154.00	47	\$7,238.00		Rumsey Electri
	Cable for above 1756-IT6I2	Allen-Bradley	1492-ACABLE 025-Y	\$177.00	47	\$8,319.00		Rumsey Electri
	Control Logix Ethernet interface module	Allen-Bradley	1756-ENBT	\$1,760.00	1	\$1,760.00		Rumsey Electri
	Control Logix Analog Output, 8 Channel	Allen-Bradley	1756-OFB	\$1,787.00	15	\$26,805.00		Rumsey Electri
12	Cable for above 1756-IOFB	Allen-Bradley	??????????			\$0.00	тво	Rumsey Electri
13	Control Logix Digital Output, 16 Channel	Allen-Bradley	1756-OB16D	\$727.00	8	\$5,816.00		Rumsey Electri
14	Controlnet PCI interface card for local PC	Allen-Bradley	1784-PCIC	\$1,569.00	1	\$1,569.00		Rumsey Electri
15						\$0.00		Rumsey Electric
16								
	SOFTWARE							
18	Logic Programming, RSLogix5000, standard, NetWorx edit	Rockwell	9324-RLT300NXENE	\$3,350.00	1	\$3,350.00		Rumsey Electri
19	PIDE_AUTOTUNE software for RSLogix5000	Rockwell	9323-ATUNEENE	\$490.00	1	\$490.00	TBD	Rumsey Electri
20		Rockwell			1			Rumsey Electric
21	RSView SE Server 25 Display w/RSLinx Enterprise	Rockwell	9701-VWSS025LENE	3,960.00	1	\$3,960.00	Server local?????	Rumsey Electri
22	RSView SE Server 25 Display	Rockwell	9701-VWSS025AENE		1	\$0.00	Client Remote???/?	Rumsey Electric
23								
24	CONTROL DISPLAY PC'S							
25	Test cell PC, display & keybord	TBD		\$1,300.00	1	\$1,300.00		
26	Control room pc - supplied by CI&C	TBD						
27								
28	HEATER DRIVE							
29	Solid State Relay, 4-20ma in, 25 A AC TPO output	Power I/O	DMA-6V25	\$99.00	120	\$11,880.00		Power I/O
30	Solid State Relay, 4-32 VDC control, 20 A	Crydom	CKRD2420	\$31.00	120	\$3,720.00		Allied
31	Variac, 120VAC, 5 A	Staco	511	\$98.00	120	\$11,760.00		Newark
32	Fuse & holder, TBD			\$1.00	120	\$120.00		
33	Bud Panels for Variac mounting, 5.25" x 19"	Bud	PS-1252	\$18.94	30	\$568.20		Allied
34	Bud Panels for PLC mounting, 7" x 19"	Bud	PS-1253	\$19.06	10	\$190.60		Allied
35	DIN Rails, 6' length to mount SSR's and TC interfaces	Various		\$5.00	12	\$60.00		
36								
37	FIELD CABLE CONNECTORS							
38	Heater cable connectors, 16 socket, crimp type MS	Amphenol	MS3126F20-16S	\$61.62	16	\$985.92		Allied
39	Crimp tool, positioner, Ins/Ext for MS3126F20-163	Amphenol	M22520/1-01	\$500.00	1	\$500.00		
40	TC cable connectors, socket crimp type - G.Labik to purcha	se					TBD	
41						\$0.00		
				\$500.00		\$500.00		
42	Misc hardware	various		\$500.00	1	\$500.00		

AC Power, Field/Rack/Tray Wire M & S Costs

NCSX Resistance heating system field installation by: Frank Jones <u>Materials total:</u> \$42,894

Wire: #2 awg	\$600
#4 awg	\$180
#10 awg	61000
2/0	\$250
#6 & #8 awg	\$140
Multi-conductor shielded (1000ft.), 10)5c
Power cable for heaters (\$6/ft.)	\$6000
Thermo-extension cable (2000ft.):	
	\$8000
	\$2000
42 ckt. "GE" panelboard	•••••
_	\$1500
480v, square-D 70a Breaker (250 af)	\$700
G-10 sheets	
5-1/8" 24" x 36"	\$260
2-1/8" 36" x 76"	\$364
PVC shed. 40 conduit, 50 ft.	\$75
5-2.5kva MGE isolation Transformers	
5-20a plugmold strips	\$550
5 200 progniora surps	ψ550

5-emi/rfi filters	\$1500
5 fan assemblies	\$500
30-25amp 1 pole breakers	\$1050
5-20amp 1 pole breakers	\$175
Panduit 2" x 2" in rack	\$250
4" x 18" fiberglass tray fittings	
For thermo-wire	\$1700
4 x 12" fiberglass tray fittings	
For heater power	\$1200
4" x 18" fiberglass straight tray	
For thermo-wire	\$2000
4 x 12" fiberglass straight tray	
For heater power	\$1200
Aluminum and fiberglass Strut	\$200
Isolation transformer	
45 kva, 480v to 208/120v41kvdc iso.	\$5500

Instrumentation and Control- Labor Estimate

NCSX RESIS	TANCE HEAT	ING TEMPERATURE CONTR	OL S	YS	ТЕМ			
Instrumentat	tion and Con	trol - R.Gernhardt- 10/24/	07					
	Task		Man	day	/S			
DESIGN			eng		dsn	sr lab	tech	
Documentai	on	R.Gernhardt						
Rack layout (1		
Internal PLC	terminal layou	t drawings (6)				3		
Create Sprea	dsheet- End to	D End - Device to PLC wire list				5		
Intra rackCW	D's, PLC to D	Drive components (10)				5		
Control		R Gernhardt, J.Dong, Sichta						
Define temp of	control algorith	ms, Associate TC W/Htr zone	s.			5		
Prepare I&C i	nterface doc.	& PLC tag assignment		5		10		
Select/Evalua	te Control sof	tware packages		1		1		
CI&C interfac	e development	t		5		2		
		Design Man Days		11	0	32		C
PROCURE	MENT		eng		dsn	sr lab	tech	
Connectors		R Gernhardt	Ŭ					
Order Heater	Field cable co	onnectors (MS type)				0.5		
Hardware								
Order PLC I/C) hardware					1		
Order Heater	Drive compon	ents				0.5		
Software								
Order Control	display softw	are				1		
		Procurement Man Days		0	0	3		C

FABRICATION		eng	dsn	sr lab	tech
Prototype	R Gernhardt				
Configure/Evaluate typical	htr / TC control channel			5	
Rack	Tech shop				
Fabricate Variac and PLC	mounting panels (40)				2
Mount Variacs (120) to par	nels				2
Mount Drive components (2	,				2
Control	R Gernhardt				
Configure & program PLC				20	
Program RSView control p	ages (heater ~6), (TC~6), (Sys	tem~7)		20	
	Fabrication Man Hours	0	0	45	6
INSTALLATION		eng	dsn	sr lab	tech
Rack	R Gernhardt/ Tech shop	Ŭ			
Install and wire Drive comp	onents			1	1(
Control	R Gernhardt/Tech shop				
Install / network PLC chas	sis (8), Wire PLC I/O,			3	:
Test- PLC & Control softw	are			5	
Install / network test cell	PC J.Dong	1			
Commission I&C interface,	testR.Gernhardt/ J.Dong	5		5	
Test Procedure				1	L,
	Installation Man Days	6	0	15	1:
LABOR		eng	dsn	sr lab	tech
	TOTAL Man Days	17	0	95	19
	Man Hr	136		760	
	Man Month	0.85		4.75	0.9

AC Power, Field/Rack/Tray Wire- Labor Estimate

NCSX RESI	STANCE HEA	TING TEMPERATURE CONTR		TEM				INSTALLATION			eng	dsn	sr lab	tech	
								Construction/Elec	trician	8					
AC Power,	Field/Rack/Ti	ray Wire- F.Jones 10/24/07						Install 70a, 3 pole 480v	oreaker						
	Task		Man da	ys				(coordinate panel PP_14	1 shutdo	wn)					1
DESIGN			eng	dsn	sr lab	tech		Install conduit thru wall	to test c	ell					2
Design/dra	ifting & super	vision- F.Jones	Ŭ			1		Install 45 kva isolation t	ansform	er					
-	tion & tray detail			4				(handling and secure to f							4
	fabrication detail			4				Install primary & second	ary brea	ker					
Rack internal la				3		-		Install new panelboard							
Existing Panel				1		-		(assemble & install bran		,					
New panel sch				1		_		Install conduit between							2
Shutdown dwg				1				Install ac power conduct							(
	g VD for panel/xfmr			1		_		Install power and instru							
•	•			3		_		around top and bottom of							10
5 rack ac powe				3				Fabricate & Install tray		system					
1	from rack to conn							Install rack power condu		-					
0 0	iring diagrams & termination details			4				Install 2-trays from mac		icks					
	wiring from rack							Install 5 racks insulated							
	ermination details	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		4				Install 5 isolation xfmrs							
Tray test cell p	plan drawing			3				(install 5 filters and plug		ps)		_			
JHA, procedur	re, ECN, work or	der		3				Hi-pot racks to verify is							
Package issue a	and field walk dow	wn		2				(coordinate with TC wo	· ·						
								Install rack power wire				_			
		Design Man Days	0) 34		0	0	Install heater power from	•						1
								(30-120v circuits-fan ou		<i>'</i>					1
PROCUR	EMENT		eng	dsn	sr lab	tech		Install/terminate heater p Machine via trav	ower fre	om racks to					1:
AC Power		F.Jones/tech shop	eng		01.100			Install/terminate thermo		·					
	ore Danale E	Pwr cable, field cables, x-forme	rc	1		_		Wire from rack to machi	1	tension					24
Tray/Condu		F.Jones/tech shop	15	1		_		Revision/Construction S				Ę			
Order tray/ o				1		_		Revision/Construction 5	ipervisio	51		5		0	11
Material re		F.Jones		1		_							'		
Material re	searcn	F.Jones		1		_					eng	dsn	sr lab	tech	
			<u> </u>		ļ		_	_							
		Procurement Man Days	() 3		0	0		UTAL	AC Pwr/Fld Man Days		42		U	121
FABRICA			eng	dsn	sr lab	tech				Man Hr	0	336	5	0	96
	uit prefab	Tech shop			1	+	4			Man Month	0) 2.1		0	6.0

Total Costs- M&S and Labor

MATERIALS & SUI		Quantity	r EM	unit est	Total	ESTIMATE BASED ON:	
Ray G estimate		Quantity	unito		Total	1) PLC feedback control system to	
	are, I/O modules, term blks						
Control PC/Displays, Ne	twork modules,					maintain port temperatures during stan	by
Heater Drive component	s and Field Cable connectors				\$211,262	and bakeout operations.	
F.Jones estimate						2) 120 zones of ACTIVE heater	
	losures, panels, x-formers, wiring]				temperature control.	
Cable tray, conduit, TC/H Rack filters, fans and ins					\$42,894	· · ·	
	Aaterials cost (unloaded)				\$254,156	3) 282 thermocouple channels available for	or
TOTAL	aterials cost (unioaded)				φ 2 5 4 ,150	monitoring and feedback control of	
						vacuum vessel and port extension	
OTAL LABOR ESTI	VIAIE					temperatures.	
						4) Archival of TC temperatures and heater	r
strumentation & Co	ontrol	eng	dsn	sr lab	tech	power in central I&C.	
mputer Div. / R.Gernha	ardt / Electrical Tech						
	nt, Fabrication and Installation					ESTIMATE INCLUDES:	
	Man Days		0	95	19	1) AC power labor and M&S costs.	
						2) PLC programming and M&S costs	
C Power, Field/Rac	k/Tray Wire					3) Rack installations and wiring cost	
ones- Design/Drafting	/ Electrical Tech (Tech Sho)				4) Includes TC/Htr Field cabling and	
ludes Design, Procurme	nt, Fabrication and Installation					terminination costs from control racks	
	Man Days		42	0	121	to feedthru ports at vessel.	
	inan Buyo	v		•		5) Test and commissioning costs.	
ABOR Totals (I&C +	AC PWR)	eng	dsn	sr lab	tech	COSTS NOT INCLUDED:	
`	, TOTAL Man Days	17	42		140	1) Control room PCs (2?) computer division	ion

Schedule

Activity ID	MILE -STONE LEVEL	Activity Description	Duration (work days	SHIFTS	Forecast Start	Forecast Finish	Total Float	Cost to Complete	FY08 FY09 FY10 FY11
1270-30		Preliminary design	65		02FEB09*	01MAY09	244	46,618.64	ORNLEM =20hr ; EA/SB =136hr ; EE//eM =1D8hr ; EC//EM =64hr ;
1270-40		PDR	0			01MAY09	244	0.00	$\overline{\mathbf{\nabla}}$
1270-50		Final Design	65		04MAY09	04AUG09	244	46,618.64	ORNLEM =20hr : EA/ISB =138hr : EE//eM =108hr : EC//EM =64hr :
1270-60		FDR	0			04AUG09	244	0.00	$\overline{\mathbf{V}}$
1270-70		Procure Hardware	130		01MAR10*	31AUG10	107	348,434.48	41+255\$k ; EA/ISB = EE//eM =24hr ;
1270-80		Fabrication	130		01SEP10	14MAR11	107	72,225.29	EM//TB =80hr ; EE//eM =380hr ;
1270-90		Installation	65	2	15MAR11	14JUN11	107	127,753.12	ORNLEM =40hr : EA//SB =40hr : EE//eM =120hr ; EE//TB =1,024hr ; ed//em=48

Staffing – Resources to be assigned by PPPL

Cost Estimate Risks

Uncertainty of the Estimate

Design Maturity Medium

Design Complexity Low

The design is straight forward, and uses industry standard components but is a conceptual design at this point.

Risk Mitigation

MDL built a prototype of the Heater and TC controller system (driver and feedback control) and installed it as a furnace controller, with good results.

NCSX Heater and Thermocouple -Instrumentation and Control

Updated 10/25/07

- Task
- Requirements
- System Proposed
- Configuration
- Component details
- AC power requirements
- M&S and Labor cost details
- Total Cost (M&S and Labor)

Tasks

- Provide resistance heating temperature control system to maintain the NCSX inner port extension wall temperatures during standby and bake out operation.
 - 114 heating control zones (channels) requested.
 - Type E Thermocouples specified for feedback element (One or more thermocouples used per zone).
- Monitor temperatures of the Vacuum Vessel body and port extensions during standby and bake out operation.
 - 279 (expandable) temperature monitoring points requested.
 - Type E Thermocouples specified.
- Send temperature data to Central I & C for archival and interface to other disciplines.

Requirements-1

• Extract from ICD-125-001 "Vacuum Vessel Local Thermocouples"

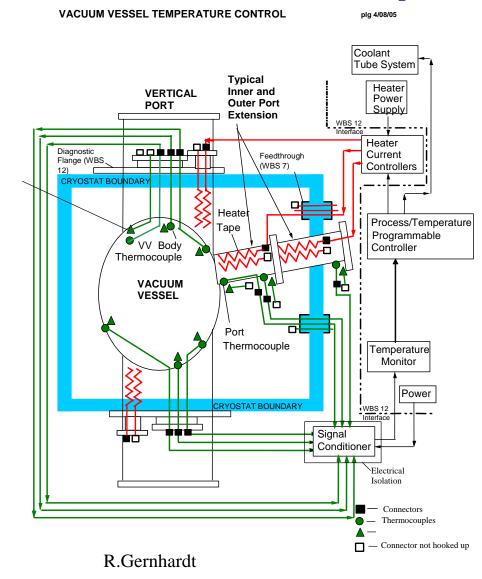
- Thermocouples shall be provided to monitor the VV temperature during standby and bake out operation.
- Provisions must be provided by WBS 171 and WBS 12 for future hookup of the additional thermocouples, i.e. connectors at the cryostat and expansion capability at the signal conditioner interface.
- WBS 12 will be responsible for overall design of the system including choice and location of components, mounting provisions, lead routing, signal conditioning, and electrical isolation.
- WBS 12 will be responsible for coordination of the thermocouple design with the other interfacing disciplines (WBS 171 and WBS 5).

Criteria

- Thermocouples will be operated in a range from room temperature to 375 C
- The thermocouple junctions will insulated from the VV.
 - Ray G comment: Need thermocouple Isolation/Standoff specification. TBD
- The leads will be insulated from all structure including the VV and Cryostat.
- The signal conditioners will be of the isolated type to prevent ground loop currents. Additionally, the instrument cabinet will be isolated from ground by insulation and isolation transformers.

Thermocouple Type

- Similar to type Omega XCIB-K-4-3-X
- Inconel Overbraided , Type E, Bolted connection, Insulated junction.


Signal Conditioners

– Isolated type, 93 required per field period (279 total), expandable to 120 per field period.

R.Gernhardt

Requirements-1.1

• Extract from ICD-125-001 "Vacuum Vessel Local Thermocouples"

Interface Block Diagrams:

Requirements-2

• Extract from ICD-123-4-5-0001 "Vacuum Vessel Port Resistance Heaters"

- The Vacuum Vessel (VV) utilizes inner and outer port extensions which project through the Modular Coil (MC) shell structure and the Cryostat wall. The port extension walls within the cryostat are electrically heated by resistance heaters which are attached to the port walls and are covered by the port insulation wrap.
- The leads from the power panel to the heaters shall be the responsibility of WBS 12. WBS 5 shall receive and archive temperature signals from WBS 12.

Installation Information:

- Each of the inner port extensions is provided with a minimum of one primary and one redundant (backup) electrical resistance heater tape mounted to their surface. The vertical ports (port 12) and large non-circular ports (port 4) will each be provided with four sets of heaters (plus backups). The port extension heater tape hookup interfaces shall be located outside the MC structure, at the inner port flanges. The port 12 heater tape hookup interface shall be at the port 12 diagnostic interface flange.
- The interfacing electrical system must be capable of upgrade to provide power to a similar system of heaters on the outer extensions, even though they are not utilized in initial operation. For purpose of assigning interface responsibility, the WBS 4 responsibility shall end at the power panel.
- The heaters must be electrically isolated from the VV and its structure. WBS 121 is responsible for the design of the inner port extension heaters, their mounting provisions, the power controllers, temperature sensors, and signal conditioning. The leads from the power panel to the heaters shall be the responsibility of WBS 12.
 - Ray G comment: Need Heater Isolation/Standoff specification. TBD
- Each heater must be capable of continuous variable operation from zero output to a maximum of 200 watts. The expected nominal operating level is 50-100 watts. The heaters must be capable of continuous operation at 350 C.

Requirements-3

Heater Count Summary

		SE121-004	SE123-150	SE123-151	SE123-156	Total/FPA	Total NCSX
Heater Tape 120"	(non Port 12 extensions)	20	26	16	62	186
Port 12 Heaters		16				16	48
TOTALS	Includes duplicate spares					78	234

Total Active Controlled Heater (channels) = 234 / 2 = 117 zones

						1 · · · · · · · · · · · · · · · · · · ·	1.11			
	AR	AR	AR		HT FLEXSEAL 350	HIGH TEMPERATURE RTV SILICONE		IX LTD. 18J, UNITED KINGDOM AFIX.COM	4	
	AR	AR	AR			1/2" HEAT TAPE RETENTION FOIL	36 GA. (.005") INCONEL 625 OR 316 SST	ASTM 8443 ASTM A240	13	
	16	16	16		PPY491001	HEAT TAPE .50" WIDE X .125" THK X 120" LONG NON-MAGNETIC (NCSX-PRL-002)	COLUMBUS, (800)-8	THERMAL CORP) OH 43201 48-7673 KHEAT.COM	12	
	58	58	58		91735A146	PAN HEAD SCREW #6-32 UNC X .38 LG 316 SST			П	
	20	20	20		9319DA578	HEX HEAD SCREW 5/16-18 UNC X .50 LG 316 SST	ATLANTA, GA (404) 3	ER-CARR 30336-2852 146-7000 ISTER.COM	10	(
	20	20	20		91950A030	FLAT WASHER .688 OD X .344 ID X .064 THK 316 STAINLESS STL	10111.00000	OT LIT, CON	9	
	32	32	32		NCSX-PRL-003	THERMOCOUPLE - 36" LEADS ISOLATED (TC-01 THRU 26)		NECTICUT 06907	8	
	26	26	26		NCSX FRE 005	THERMOCOUPLE - 120" LEADS ISOLATED (TC-27 THRU 58)		48-4286 EGA.COM	7	
	4	4	4		SE123-167	MOUNT FLANGE			6	
	2	2	2		SE123-164	CRYOSTAT INTERFACE FLG WELDMEN	T		5	
	29	29	29		SE 23- 55	THERMOCOUPLE MOUNTING PLATE (B	(-0 THRU 29)		4	1
					SE310-030-3	FLUX LOOP GEOMETRY-VVSA 3			3	Ш
					SE3 0-030-2	FLUX LOOP GEOMETRY-VVSA 2			3	
			1		SE310-030-1	FLUX LOOP GEOMETRY-VVSA I			3	
					SE120-002	VACUUM VESSEL SUB ASSEMBLY			2	1
AR	\geq				- 3	VVSA ASSEMBLY STATION 1, PHASE	I - VVSA 3		1	l
AR		$>\!\!\!\!>$			-2	VVSA ASSEMBLY STATION 1, PHASE	I - VVSA 2			I
AR			$>\!\!\!\!>$		-	VVSA ASSEMBLY STATION 1, PHASE	I - VVSA I			
-008	m	2	_	CAGE CODE	PART OR IDENTIFYING NO	NOMENCLATURE OR DESCRIPTION	MATERIAL	SPECIFICATION	FIND NO	
SE 121				+	ASSEMBLY		PARTS LIST			

R.Gernhardt

Requirements-3.1

SE122-042	2	÷	COLE	IDENTIFYING NO NEXT Assembly	OK DESCRIPTION	PARTS LIST		NU
642	Γ		CAGE	PART OR	NOMENCLATURE OR DESCRIPTION	WATERIAL	SPECIFICATIO	FIND
AR		X		-	PORT 4A EXTENTION MITH HEAT TA	PE AND THERMOCOUPLES		
AR	\geq			- 2	PORT 48 EXTENTION WITH HEAT TAI	PE AND INERWOCOUPLES		1
		1		SE122-006-1	PORT 4A EXTENTION WELDHENT			5
	1			SE122-006-2	PORT 4D EXTENTION WELDHENT			2
	8	8		SE123-155-1	THERMOCOUPLE NOUNT PLATE			- 5
	в	8		PP1491001	HEAT TAPE .50 WIDE X 120° LONG Leads on Same End Non Nagnetic	NCSX-PRL-12-	042	4
	16	16		NC58-PRL-12-603	THERMOCOLPLE - 36" LENDS ISOLATED	ONEGA ENGINEERIN 11ANFORD, CONNECTI (8001-848-4) NVN, DAEGA, C	CUT 06997 286	3
	16	16		917354146	NB-12 UNC X38 LO Par head philips machine schem 316 SST	MEMASTER-CA Aflanta, ga 3033 (4043) 346-71 WWW.NCMASTER.	6-2852 800	6
	AR.	AR			HEAT TAPE RETENTION FOIL	36 64.1.005 THKI X 1.00 011 INCONEL 625 DR 316 \$\$T	ASTN B443 ASTN A240	7

	SE123-150	SE123-151	SE123-156	Total/FPA	Total NCSX	15% Spares	Procure Qty
Thermocouples 36"	40	26	32	98	294	45	339
Heater Tape 120"	20	26	16	62	186	28	214

SE121-004= ± 48 Heater tape TOTAL=234

AR AR	ыя	15		R 4	a R	8 R.	A1					MEAT TAPE REFENTION FOIL	36 GA. (. 005 TRED X 1. 00 HIDE INCOMEL 625 GR 316 331	ASTN 8443 ASTN 8240	7	•	•	8 48	AR AR	AR A	R AR	AR AR	AR AR			HEAT TAPE RETENTION FOIL	36 EA 1.005 THK1 X 1.00 H INCOMEL 625 OR 316 SST	ASTN 8443 ASTN A240	-
4 4	4	4	4	•	4	4	4			91735A146		HS-32 BOC X .18 LG PAN HEAD PHILLIPS BACKINE SCREW 314 SST	NCHASTER-CAR Atlasta, GA 30330 E4060 346-70 WWW.MCNESTER.(-2052	ε			۹ ۵	8 4	•	•	• •	• •		DITSSALIS	NG-32 UNC I .10 LG PAN HEAD PHILLIPS MACHINE SCREW 316 SST	NERASTER-CA Atlanta, ga 1013 E 4041 146-7 WWR.HCMASTER	6-2452 100 .004	
	ł	4	4		4	4	4			NCS1-PRL-12-	00.5	THERMOCOUPLE - 36" LEADS	CHEGA ENGINEERING STANFORD, COMBECTIO LEGOD-148-42 WW, DAEGA, CO	ÚT 06901	5	t	;	2 4	4 2	2	2 2	2 2	2 2		8050-PRL-12-803	THE INDEGUPLE - 35" LEADS	OMEGA ENGINEERIN STAMFORD, CONNECTI ESCOL-SIAS-4, WWW, OMEGA, C	CUT GENO7	
2 2	z	s	z i	2 2	2	ş	z		 	PP1491061		HEAT TAPE .50 WIDE X 120" LONG Liads on Sami End Bon-Ingentic	NCSI-PRL-12-0	502	4	4	·Щ			-		2 2			PP1491031	HEAT TARESO WIDE & 120° LG Linds of Dake End Or-Regnitic	NC 51 - P 81, - 12 -	092	
2 2	2	2	2 2	2 2	2	2	2		+	SE123-155-	I	THE BHOCOUPLE MOUNT PLATE			3		1	2 4	4 2	13 13	44	2 2	2 2	+	SE123-155-1 SE121-014	THERMOCOLPLE HOUNT PLATE SPACED PODT WELDHENT			+
1	-		<u> </u>		+÷	1°	-	-	+	50120-005-		PORT 106 EXTENSION WELDHENT			2		- P	8		++	+		\vdash	+ +	SE122-007-2	PORT 175, 188 DOVE WELDHENT			+
1	+	+	+	+	+	-		-	+	50120-005-	3	PORT IDA EXTENSION WELDHERT			2	-	\vdash			++	+ +		\vdash	+ +	SE 122-007-1	PORT 17A, 184 DONE WELDHENT			+
	1				\top					\$[120-005-	2	PORT SE ECTENSION MELONENT			2		\vdash		· .	++	+		\vdash	+ +	57 122-005-18	PORT 125 EETENSION VELOMENT			+
	-		+	+	+	-		_	-	5[120-005-		MORT SA EXTENSION MELONENT			2		\vdash	+			++			+ +	32120-005-11	PORT ISA EXTENSION VELIMENT			+
		<u>+ + +</u>		+	+	-		_	+	SE170-005-	8	PORT 15 EXTENSION MELENENT			2		\vdash	+	-	+++	. + - +		\vdash	+ +	SE 120-005-16	PORT TIB EXTENSION VELOVERT			+
										SE1 20 - 905-	7	PORT TA EXTENSION MELENENT			2		\vdash	+		++				+ +	32120-005-15	PORT LIA EXTENSION VELONERT			+
				1	\top					SE120-005-	ć	PORT 68 EXTENSION MELONENT			2		\vdash			++	11	1	\vdash		\$E120-005-10	PORT 48 EXTENSION VELOVER1			+
	+		+	-	1	-		_	-	SEL20-005-	5	FORT ON EXTENSION MELONENT			2		\vdash			++	+ +	1		+	SE120-005-9	PORT 44 ENTENSION VELOVER1			+
		+	+	+	T.	1		-	+	SE1 20 - 005-	4	PORT 56 ECTENSION MELENINT			2	•	\vdash				+ +	-		+	5[120-005-2	PORT 25 ESTENSION VELOVER1			\pm
							1			SE1 20 - 905-	3	PORT SA EXTENSION MELEMENT			2		\vdash			++	+		1		SE 120-005-1	FORT 25 ESTENSION VELOCET			+
\sim					-					-10		PORT 108 EXTENTION WITH HEAT T	APE AND THERMOCOUPLES		Ĩ.		AR D	<							-11	SPACER POUT EXTENTION WITH HEAT TAPES	S AND THERMOCOUPLES		-
		\vdash	+	+	+	-		_	+	- 9		PORT IDA EXTENTION WITH HEAT T	APE AND THERMOCOUPLES		1		AR	X		++					- 10	PORT 175, 165 DONE EXTENTION WITH HEA	AT TAPES AND THERMOCOUPLES		-
	M	+ +	+	+	+	-		-	+	-8		PORT SS EXTENTION WITH HEAT TA	PE AND THERMOCOUPLES		1		AR		×						-1	PORT ITA, ISH DONE EXTENTION WITH NEW	AT TAPES AND THERMOCOUPLES		\pm
		ष्ट्र		+	+	-			-	-7		PORT SA ECTENTION WITH HEAT TA	PE AND THERMOCOUPLES		1		AR								-8	PORT ISB EXTENTION WITH BEAT TAPES AN	ID TRERMOCOUPLES		Т
1		r 1	×		\top					-6		PORT 18 EXTENTION WITH HEAT TA			1	_	AR			X					-1	PORT ISA ECTENTION WITH BEAT TAPES AN			
	+	t f	5	2	+	-		_	+	-5		PORT TA EXTENTION WITH HEAT TA	PE AND THERMOCOUPLES		i i	-	AR				< ⊥				-8	PORT THE EXTENTION WITH NEAT TAPES AN	ID TRERMOCOUPLES		
		\vdash	- 1	Ъ	2	-		-	+	- 6		PORT 45 EXTENTION WITH HEAT TA	PE AND THERMOCOUPLES		1		AR				X				-5	PORT THA ECTENTION WITH NEAT TAPES AN			
2				-	'Þ				-	- 3		PORT 6A EXTENTION WITH HEAT TA	PE AND THERMOCOUPLES		1	c .	4.8					×			-4	PORT 45 ESTENTION WITH HEAT TAPES AN			4
			+	-	-	X	1		-	-2		PORT SE EXTENTION WITH HEAT TA			1	-	AR					\sim		$ \rightarrow $	-3	PORT 44 EXTENTION WITH HEAT TAPES AND			_
		\vdash	+	+	+	r	×	_	+			PORT SA EXTENTION WITH HEAT TA	PE AND THERMOCOUPLES		1		AR						\times		-2	PORT 25 EXTENTION WITH HEAT TAPES AND			
		+	+	+	+	-	F	CAB		PART OF		BONENCLATURE	HATERIAL	SPECIFICATION	FIND	6	AR			\vdash	+			6107	-I PART OR	PORT 2% EXTENTION WITH HEAT TAPES WAS	0 THERMOCOUPLES		+
2 0		-	+ -	e 1	2	2	- I	C00		IDENTIFYING	1 0	OR DESCRIPTION	RA-LEIAL	artentention	NO.	-	喜.							CODE	DENTLISTING ND	ICHESCLATURE OR DESCRIPTION	AN TERTAL	SPECIFICATIO	08
								-		HENT ASSEMBLY			PARTS LIST			č.	ŝ			7		7 7	~ -	4	ASSTHELY		PARTS LIST		+

R.Gernhardt

Requirements-4

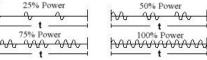
• Extract from ICD-123-64-0001-00 "Cooling/heating requirements"

Description of Interface: The Vacuum Vessel Subassembly (VVSA) exterior surface includes tubes which circulate helium gas to provide heating during bake out of the vacuum vessel and during idle periods when the vacuum vessel is on standby. The helium gas provides cooling of the vessel after operational shots. This ICD defines the operational parameters for the pressurized helium supplied by WBS 64 and defines the requirements for the hookup interface between WBS 123 and WBS 64.

Installation/Operation Information:

- The port extensions are independently heated by resistance heaters during baking and idle operation.

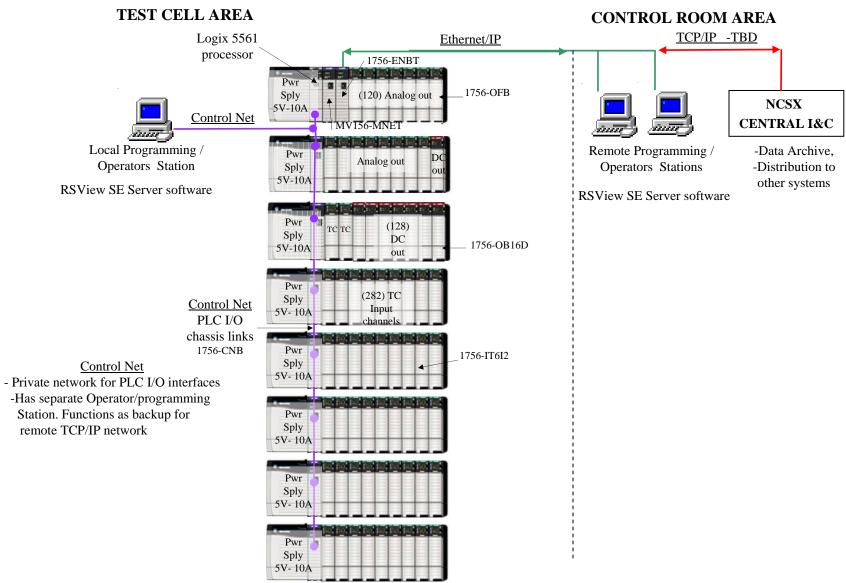
System Proposed 1


- Provides for:
 - 120 Channels of Active Heater Temperature Control Zones
 - 114 heating control zones (channels) requested.
 - 282 Channels of Thermocouple monitoring points
 - 279 (expandable) temperature monitoring points requested.

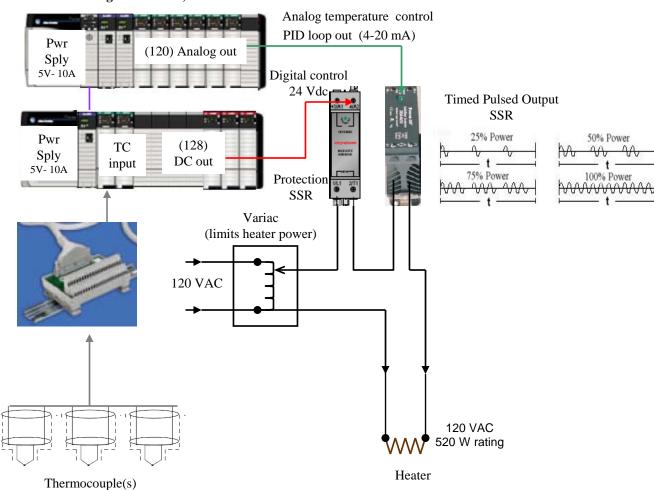
System Proposed 2

- PLC based temperature control of heaters:
 - Rockwell Control Logix Platform
 - Fully-redundant controller architecture provides bumpless switchover and high availability
 - Available but not proposed for this system
 - Widest range of communication options and analog, digital and specialty I/O.
 - Select ControlLogix products are TUV-certified for use in SIL 2 applications.
 - Isolated differential Thermocouple I/O modules. 282 channels available-expandable.
 - 3250 VDC for 60 sec user to backplane, 1900 VDC for 60 sec channel to channel.
 - DIN rail terminal block interfaces to Thermocouple field wiring
 - Auto-detects T/C failures. PLC logic programming for heater control fault protection.
 - Networking
 - Control Net for PLC I/O and Local Programming/Control
 - Multiple processors can access common I/O.
 - Offers backup control to remote TCP/IP network.
 - TCP/IP interface to Central I&C for data exchange. May use Rockwell software.TBD
 - Ethernet/IP network for Remote system control operator interfaces.
 - Software
 - RSLogix 5000 PLC programming software. PC platform
 - PID temperature control instructions.
 - RSView32 or SE MMI software---TBD . PC operator interface.

System Proposed 3


- Heater 120VAC control:
 - Zero crossing Time Pulsed Output (TPO) solid state relay supplies variable 120VAC pulse train to heater.
 - TPO chosen to minimize RFI to diagnostics.

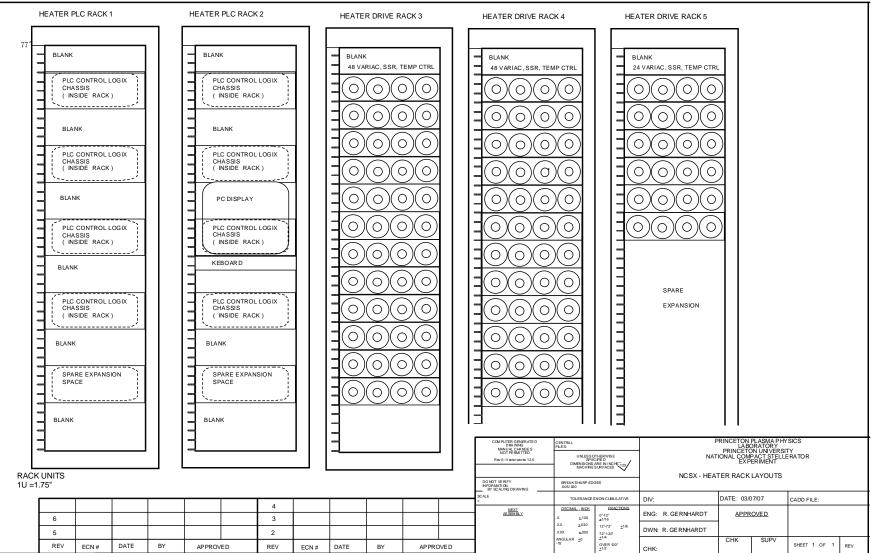
- Phased output SSR's are noisy (i.e.. Standard lighting dimmers)


	ትታችታችታችታችታችታችታችታችታችታችታችታችታ
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	100% Power

- Heater power limited by Variac.
- Secondary SSR protects for thermal runaway (shorted TPO control SSR).
- One or more thermocouples provide feedback for each heating zone PID loop.
 - Failed TC sets alarm, notifies operator and removes TC for heating zone mix allowing conditional heater zone control.

Network Block Diagram

Heater Control Block Diagram


ControlLogix Processor, 1756 I/O

ControlLogix platform/wiring

1492 IN PANEL WIRING SYSTEMS FOR CONTROLLOGIX (1756 I/O)

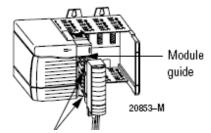
Rack Layouts

Sensor Specifications

• Thermocouples:

- Ref: NCSX-PRL-12-003-00
 - Type-E, Isolated, electrically floating junction Type-E, Isolated, electrically floating junction.
 - The TC shall be covered by a single layer braided jacket and fitted with a junction end fitting with holes which permit attachment with # 6 screws.
- Similar to type Omega XCIB-E-4-3-10.
- Heaters:
 - Manufacture: BriskHeat
 - BH tech comment: "BIH series tapes are constant resistance type. Same R at full temp as at ambient turn on".
 - Custom BIH Style Heating Tape: 1/2" W X 10 Ft. L, non-magnetic.
 - Heavy Insulated Heating Tape, **520 Total Watts**, 24" Leads Same End, Split Plug, 120 Volt.
 - Custom BIH Style Heating Tape: 1/2" W X 6 Ft. L, non-magnetic.
 - Heavy Insulated Heating Tape, **310 Total Watts**, 24" Leads Same End, Split Plug, 120 Volt

Thermocouple I/O


ControlLogix Enhanced Thermocouple Input Module

Catalog Number 1756-IT6I2

Specifications

Cat. No.	1756-IT6I2
Number of Inputs	6 individually isolated channels
Module Location	1756 ControlLogix Chassis
Backplane Current (mA) at 24V	120 mA
Backplane Current (mA) at 5V	200 mA
Backplane Power	3.9 W
Power Dissipation, Max.	3.9W
Thermal Dissipation, Max.	13.3 BTU/hr.
Input Signal Range	-12mV to +79mV (1.4μV per bit) -12mV to +30mV (0.7μV per bit — high resolution range)
Supported Thermocouple Types	B, E, J, K, R, S, T, N, C, D, L (TXK/XK)
Thermocouple Linearization	ITS-90
Input Resolution, Bits	16 bits (1.4µV/bit — Typical; 0.7µV/bit — High resolution range)
Data Format	Left justified, 2s complement – Integer mode IEEE 32 bit – Floating point mode
Input Impedance	> 10 MΩ
Open Circuit Detection Time	Positive full scale reading within 2 s
Overvoltage Protection	120V ac/dc maximum
Noise Rejection, Normal Mode	60 dB at 60 Hz ⁽²⁾
Noise Rejection, Common Mode	160 dB minimum, tested at 600V ac/60Hz applied with 100 ohms differential resistance
Channel Bandwidth	15 Hz ⁽²⁾
Settling Time to 5% of Full Scale	< 80 ms ⁽²⁾
Module Conversion Method	Sigma-Delta

Isolation voltage (continuous-voltage withstand rating)	backplane			
Thermocouple	-12 to +78mV range	-12 to +30mV range		
Temperature/Millivolt Input Range				
Thermocouple Type B	3001820 °C 5723308 °F	full range		
Thermocouple Type C	02315 °C 324199 °F	01725 °C 323137 °F		
Thermocouple Type E	-2701000 °C -4541832 °F	-270415 °C -454779 °F		

Thermocouple Resolution Over	-12+78mV range	-12+30mV range
Nominal Temperature Range		
Type B, R, S, C	~ 0.15 °C	~ 0.08 °C
	~ 0.28 °F	~ 0.15 °F
Type E, J, K, T, N	~ 0.05 °C	~ 0.03 °C
	~ 0.09 °F	~ 0.05 °F
Type D	~ 0.07 °C	~ 0.03 °C
	~ 0.13 °F	~ 0.05 °F
Type TXK/XK (L)	~ 0.02 °C	~ 0.01 °C
	~ 0.04 °F	~ 0.02 °F
Calibrated Accuracy, Typical	0.05% of full range at 25	°C
Calibrated Accuracy, Worst case	Better than 0.1% of full ra	ange at 25 °C ⁽³⁾
Calibration Interval	12 months	
Accuracy, Local Cold	± 0.3 °C	
Junction Sensor		
Accuracy, Remote Cold	±0.3 °C	
Junction Sensor		
Input Offset Drift with	0.5 μV/ °C	
Temperature	0.0 µW, 0	
•	45 100	
Gain Drift with Temperature, Nom.	15 ppm/°C	
	1.4 µV/ °C for -12+78	
	0.6 μV/ °C for -12+30	nv range
Gain Drift with Temperature, Max.	25 ppm/ °C	
	2.3 µV/ °C for -12+78	nV range
	1.1 µV/ °C for -12+30	nV range
Module Error over Full	0.15% of temperature rar	ige
Temperature Range	'	
Module Scan Time for all Channels	25ms minimum – Floating	point mode (millivolt)
(Sample Rate)	50ms minimum – Floating	point mode (temperature
• •	linearization)	
	10ms minimum – Integer	(millivolt)

CRYDOM SSR (protection relay)

Series CKR240 10-30Amp • 240 Vac • AC OUTPUT

The Series CKR Solid State Relays utilize Crydom's proprietary thermal

management technology providing a

compact and efficient design. Built-in

DIN Rail attachment, easy-to-use Box Clamp type terminals and integral heat

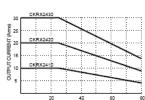
sinking complete the package. This

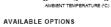
Manufactured in Crydom's ISO 9001

in ambient temperatures of 25°C.

compact new design offers up to 30Arms

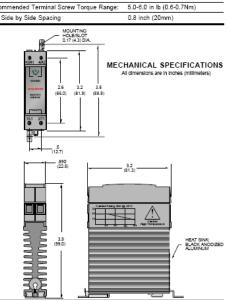
- SCR Output 10A. 20A & 30A Models
- Ground Terminal Included
- Zero Voltage and Random
- Turn-On Switching Low Leakage
- Integral Heatsink (22.5 mm)
- DIN Rail & Panel Mount
- Status Indicating LED


- DC or AC Control
- Certified facility for optimum product performance and reliability. Integrated Overvoltage
- Protection by Automatic Self Turn-On (Suffix P Option)


MODEL NUMBERS	5	CKRD2410 CKRA2410	CKRD2420 CKRA2420	CKRD2430 CKRA2430				
Operating Voltage (47-63 Hz) [Vrms]	D	24-280	24-280	24-280				
Max. Load Current @ 25°C Amblent Tem	perature (Arms)	10	20	30				
Min. Load Current, [Arms]		0.15	0.15	0.15				
Transient Overvoltage [Vpk]	600	600	600					
Max. Surge Current, (16.6ms) [Apk]		120	250	625				
Max. On-State Voltage Drop @ Rated Cu	rrent [Vpk]	1.6	1.6	1.6				
Maximum I ² t for Fusing, (8.3 msec.) [A	60	260	1620					
Max. Off-State Leakage Current @ Rated	Voltage [mArms]	10	10	10				
Min. Off-State dv/dt @ Max. Rated Voltag	e [V/µsec] ②	200	500	500				
Max. Turn-On Time		1/2 Cycle (DC Control), 10.0 msec (AC Control)						
Max. Turn-Off Time		1/2 Cycle (DC Control), 40.0 msec(AC Control)						
Power Factor (Min.) with Max. Load		0.5	0.5	0.5				
INPUT SPECIFICATIONS [®]	DC CONTROL		CONTROL Standard	AC CONTROL (E Suffix)				
Control Voltage Range	4.0-32 Vdc	90	-280 Vrms	18-36 Vrms				
Max. Turn-On Voltage	4.0 Vdc		90 Vrms	18 Vrms				
Min. Turn-Off Voitage	1.0 Vdc		10 Vrms	4.0 Vrms				
Typical Input Current Range 🏵	8-12mA	2mA @ 120	Vrms, 4 mA @ 240Vrn	ms 10mA @ 24 Vrms				
GENERAL NOTES		© 2003	CRYDOM CORP, Specifical	tions subject to change with				

GENERAL SPECIFICATIONS

Dielectric Strength 50/60Hz Input/Output/Base	4000 Vms
Insulation Resistance (Min.) @ 500 Vdc	10 ⁹ Ohm
Max. Capacitance Input/Output	8 pF
Ambient Operating Temperature Range	-40 to 80°C
Ambient Storage Temperature Range	-40 to 125°C
Status Indicating Display	Green LED
MECHANICAL SPECIFICATIONS	
Weight: (typical)	10 oz. (280g)
Encapsulation: Therm	ally Conductive Epoxy
Terminals:	Box Clamp Type
Maximum Wire Size:	AWG #10 (3mm)
Recommended Terminal Screw Torque Range:	5.0-6.0 in lb (0.6-0.7Nm)
Min. Side by Side Spacing	0.8 inch (20mm)



E 24 Vac Input (18-36 Vac) Example: CKRA2410E

Р

- Internal Overvoltage Protection. Relay Will Self Trigger Between 450-600 Vpk.
- Not Suitable For Capacitive Loads. Example: CKRD2410P (AC & DC Control)
- -10 Random Turn-On (AC & DC Control) Phase Controllable (DC Control) Example: CKRD2410-10

Power IO SSR (analog drive relay)

POWER-IO[™]

Intelligent Automation I/O Products

4-20mA activated, single phase, 25 or 40 amp, din rail contactor

•Accepts a 4-20mA analog process input and provides a high speed, time proportional AC output (TPO)

•Permits a PLC, PC, DCS or other control system to supply a TPO without any software programming or intensive CPU calculations of variable on time vs off time.

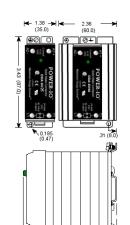
•Output cycle time ("ON" time + "OFF" time) = 0.5 second. Output resolution is one half of one sinewave (8.3 msec for 60 hz applications).

For example, when the POWER-IO unit is used to control an electric heater, band heater, heat sealing bar, etc:

4mA = 0% = heater is off

12mA = 50% = heater is ON for 250 msec, OFF for 250 msec, ON for 1/4 second, OFF for 1/4 second... 16mA = 75% = heater is ON for 375 msec, Off for 125 msec, ON for 375 msec...

17.5mA = 84.375% = heater is ON for 422 msec, Off for 88 msec, ON for 422 msec...

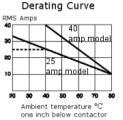

20mA = 100% = heater is ON

Note: Rapid pulsing of the heaters provides the most precise temperature control, PLUS it dramatically increases the life of the heaters due to a reduction in the thermal stress of expansion and contraction.

Features

 Maximum Surge Survival[™] technology -- triple layer, voltage surge protection •Green LED for input status Thermally optimized heat sink permits edge-to-edge installations on a din rail •Built-in snubber circuit Zero crossing activation -- low EMI, low noise to nearby electronics Internal 50A thyristors for high inrush capability

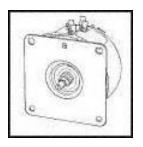
•4000 volt isolation. 1400 blocking voltage •1000 volt per microsecond immunity •Highest thermal efficiency -- less than 1.2 watts dissipated per amp switched. •UL, CSA, CE Industry standard A1, A2, L1, T1 terminal numbers •High density design permits more amps per square inch



3.94 inches (100.0) mm

Specifications

Part Number	Line Volt age Ran ge (VAC)	Load Current Range (A RMS)	Max Voltage Drop at 20mA					
DC activated	b		·					
DMA- 6V25	24- 660	.10-25	6VDC					
DMA- 6V40	24- 660	.10-40	6VDC					
Off-State dv/dt	1000 v/	/μs						
Isolation	4000 vo	olts						
I ² T fuse			ussman FWP50A14F, FWC32A10F, 10, M330015, K330013					
Turn-on time	<8.3 m	s at 60hz						
Turn-off time	<8.3 m	s at 60hz						
Terminals Will accept #24-#10 AWG wire. Torque: 7-9 inch lbs.								



7/7/2008

R.Gernhardt

Variac

Newark InOne Part No.: 83F7131 Manufacturer: STACO ENERGY PRODUCTS

Manufacturer Part No.: 511 Description: Variable Transformer Supply Voltage:120V; Power Rating:0.6kVA; Number of Phases:Single; Leaded Process Compatible:No; Current Rating:5A; Peak Reflow Compatible (260 C):No; Output Voltage Max:120VAC RoHS Compliant: No

AC Power estimate

- 5 Equipment racks required
 - PLC Chassis rack 1
 - 1 Circuit, 120VAC @ 20 Amp
 - PLC Chassis rack 2
 - 1 Circuit, 120VAC @ 20 Amp
 - Heater Drive Rack 3
 - 1 Circuit, 120VAC @ 20 Amp
 - Heater Drive Rack 4
 - 1 Circuit, 120VAC @ 20 Amp
 - Heater Drive Rack 5
 - 1 Circuit, 120VAC @ 20 Amp
- Heater AC source power
 - If sized for max heater rating 520 W.
 - 120VAC @ 520 Amps required.
 - 520W/120VAC= 4.33A/htr
 - 120 htr x 4.33A = <u>Requires 520 A</u>
 - If sized for specified heater operation, 200 W continuous. 120VAC @ 200 Amp required.
 - 200W/120VAC = 1.66 A/htr
 - 120 htr x 1.66A = <u>Requires 200 A</u>
 - <u>Providing circuits for 120VAC @ 360A continuous</u>

Control I/O M & S Costs

I/O M&S Total = \$211,262

	Provides for 120 Heaters and 282 Thermocouples							
Rev 1:	24 OCT 2007 R.Gernhardt							
ltem	Description PLC	Mfgr	Model	unit cost	Qty	Item Cost	Comment	Source
1	Logix 5560 processor with 2 M memory. (Is 2M enough?)	Allen-Bradley	1756-L61	\$5,105.00	1	\$5,105,00	memory size???	Rumsey Electric
2	Control Logix Chassis, 10 slot	Allen-Bradley	1756-A10	\$542.00	8	\$4,336.00		Rumsey Electric
3	Control Logix Power supply, 10 A	Allen-Bradley	1756-PA 72	\$805.00	8	\$6,440.00		Rumsey Electric
4	Controlnet interface module	Allen-Bradley	1756-CNB	\$1,312.00	8	\$10,496.00)	Rumsey Electric
5	Control Logix Ethernet interface module	Allen-Bradley	1756-ENBT	\$1,760.00	1	\$1,760.00		Rumsey Electric
6	MODBUS-TCP/IP communications module for 1756 chassis	ProSoft	MV156-MNET	\$2,228.00	1	\$2,228.00)	Rumsey Electric
7	Control Logix Enhanced Isolated TC module, 6 Channel	Allen-Bradley	1756-IT6I2	\$1,915.00	47	\$90,005.00		Rumsey Electric
8	Interface module for above 1756-IT6I2	Allen-Bradley	1492-AIFM 6TC-3	\$154.00	47	\$7,238.00		Rumsey Electric
9	Cable for above 1756-IT6I2	Allen-Bradley	1492-ACABLE 025-Y	\$177.00	47	\$8,319.00		Rumsey Electric
10	Control Logix Ethernet interface module	Allen-Bradley	1756-ENBT	\$1,760.00	1	\$1,760.00		Rumsey Electric
11	Control Logix Analog Output, 8 Channel	Allen-Bradley	1756-OFB	\$1,787.00	15	\$26,805.00		Rumsey Electric
12	Cable for above 1756-IOFB	Allen-Bradley	??????????			\$0.00		Rumsey Electric
13	Control Logix Digital Output, 16 Channel	Allen-Bradley	1756-OB16D	\$727.00	8	\$5,816.00		Rumsey Electric
14	Controlnet PCI interface card for local PC	Allen-Bradley	1784-PCIC	\$1,569.00	1	\$1,569.00		Rumsey Electric
15						\$0.00		Rumsey Electric
16								
17	SOFTWARE							
18	Logic Programming, RSLogix5000, standard, NetWorx edit	Rockwell	9324-RLT300NXENE	\$3,350.00	1	\$3,350.00	TBD	Rumsey Electric
19	PIDE AUTOTUNE software for RSLogix5000	Rockwell	9323-ATUNEENE	\$490.00	1	\$490.00		Rumsey Electric
20		Rockwell			1			Rumsey Electric
21	RSView SE Server 25 Display w/RSLinx Enterprise	Rockwell	9701-VWSS025LENE	3,960.00	1	\$3,960.00	Server local?????	Rumsey Electric
22	RSView SE Server 25 Display	Rockwell	9701-VWSS025AENE		1	\$0.00	Client Remote???/?	Rumsey Electric
23								
24	CONTROL DISPLAY PC'S							
25	Test cell PC, display & keybord	TBD		\$1,300.00	1	\$1,300.00		
26	Control room pc - supplied by Cl&C	TBD						
27								
28	HEATER DRIVE							
29	Solid State Relay, 4-20ma in, 25 A AC TPO output	Power I/O	DMA-6V25	\$99.00	120	\$11,880.00		Power I/O
30	Solid State Relay, 4-32 VDC control, 20 A	Crydom	CKRD2420	\$31.00	120	\$3,720.00		Allied
31	Variac, 120VAC, 5 A	Staco	511	\$98.00	120	\$11,760.00		Newark
32	Fuse & holder, TBD			\$1.00	120	\$120.00		
33	Bud Panels for Variac mounting, 5.25" x 19"	Bud	PS-1252	\$18.94	30	\$568.20		Allied
34	Bud Panels for PLC mounting, 7" x 19"	Bud	PS-1253	\$19.06	10	\$190.60		Allied
35	DIN Rails, 6' length to mount SSR's and TC interfaces	Various		\$5.00	12	\$60.00		
36								
37	FIELD CABLE CONNECTORS							
38	Heater cable connectors, 16 socket, crimp type MS	Amphenol	MS3126F20-16S	\$61.62	16	\$985.92		Allied
39	Crimp tool, positioner, Ins/Ext for MS3126F20-163	Amphenol	M22520/1-01	\$500.00	1	\$500.00		
40	TC cable connectors, socket crimp type - G.Labik to purcha	se					TBD	
41						\$0.00)	
42	Misc hardware	various		\$500.00	1	\$500.00		

AC Power, Field/Rack/Tray Wire M & S Costs

NCSX Resistance heating system field installation by: Frank Jones Materials total: \$42,894

> Wire: #2 awg \$600 #4 awg \$180 #10 awg \$1000 2/0 \$250 #6 & #8 awg \$140 Multi-conductor shielded (1000ft.), 105c Power cable for heaters (\$6/ft.) \$6000 Thermo-extension cable (2000ft.):.... Type-E shielded-8pr.(\$4/ft.) \$8000 2-"GE" breakers & enclosure \$2000 42 ckt. "GE" panelboard..... 3 ph. 4 wire, 150A \$1500 480v, square-D 70a Breaker (250 af) \$700 G-10 sheets..... 5-1/8" 24" x 36" \$260 2-1/8" 36" x 76" \$364 PVC shed. 40 conduit, 50 ft. \$75 5-2.5kva MGE isolation Transformers \$6000 5-20a plugmold strips \$550

\$1500 5-emi/rfi filters 5 fan assemblies \$500 30-25 amp 1 pole breakers \$1050 5-20amp 1 pole breakers \$175 Panduit 2" x 2" in rack \$250 4" x 18" fiberglass tray fittings \$1700 For thermo-wire 4 x 12" fiberglass tray fittings For heater power \$1200 4" x 18" fiberglass straight tray For thermo-wire \$2000 4 x 12" fiberglass straight tray For heater power \$1200 Aluminum and fiberglass Strut \$200 Isolation transformer 45 kva, 480v to 208/120v...41kvdc iso. \$5500

AC Pwr/Fld Tray M&S Total = \$42,894

Instrumentation and Control- Labor Estimate

NCSX RESIS	TANCE HEAT	ING TEMPERATURE CONTR	OL SYS	TEM		
Instrumentat	tion and Con	trol - R.Gernhardt- 10/24/	07			
	Task		Man day	/S		
DESIGN			eng	dsn	sr lab	tech
Documentai	on	R.Gernhardt				
Rack layout (1 dwg)				1	
Internal PLC	terminal layou	t drawings (6)			3	
Create Sprea	dsheet- End to	D End - Device to PLC wire list			5	
Intra rackCWD's, PLC to Drive components (10)					5	
Control		R Gernhardt, J.Dong, Sichta				
Define temp of	control algorith	ms, Associate TC W/Htr zone	s.		5	
Prepare I&C i	nterface doc.	& PLC tag assignment	5		10	
Select/Evalua	ate Control sof	tware packages	1		1	
CI&C interfac	e development	t	5		2	
		Design Man Days	11	0	32	(
PROCURE	EMENT		eng	dsn	sr lab	tech
Connectors		R Gernhardt				
Order Heater	Field cable co	onnectors (MS type)			0.5	
Hardware						
Order PLC I/C	D hardware				1	
Order Heater	Drive compon	ents			0.5	
Software						
Order Control	display softw	are			1	
		Procurement Man Days	0	0	3	(

FABRICATION		eng	dsn	sr lab	tech
Prototype	R Gernhardt				
Configure/Evaluate typical				5	
Rack	Tech shop				
Fabricate Variac and PLC	mounting panels (40)				2
Mount Variacs (120) to pa					2
Mount Drive components (240- SSR's) on DIN rails				2
Control	R Gernhardt				
Configure & program PLC				20	
Program RSView control p	ages (heater ~6), (TC~6), (Sys	tem~7)		20	
	Fabrication Man Hours	0	0	45	6
INSTALLATION		eng	dsn	sr lab	tech
Rack	R Gernhardt/ Tech shop				
Install and wire Drive comp	oonents			1	10
Control	R Gernhardt/Tech shop				
Install / network PLC char	ssis (8), Wire PLC I/O,			3	3
Test- PLC & Control softw	vare			5	
Install / network test cell	PC J.Dong	1			
Commission I&C interface	, testR.Gernhardt/ J.Dong	5		5	
Test Procedure				1	
	Installation Man Days	6	0	15	13
LABOR		eng	dsn	sr lab	tech
	TOTAL Man Days	17	0	95	19
	· · · · ·				
	Man Hr	136		760	152
	Man Month	0.85		4.75	0.95

AC Power, Field/Rack/Tray Wire- Labor Estimate

NCSX RESISTANCE HEA	TING TEMPERATURE CONTR	OL SYS	ТЕМ			
	ray Wire- F.Jones 10/24/07	Mary day				
Task		Man da	<u> </u>			
DESIGN		eng	dsn	sr lab	tech	INSTALLATION eng dsn sr lab tech
Design/drafting & super	rvision- F.Jones					Construction/Electricians
A achine elevation & tray detail	ls		4			Install 70a, 3 pole 480v breaker
Tray support fabrication detail			4			(coordinate panel PP_141 shutdown)
Rack internal layout details			3			Install conduit thru wall to test cell
kisting Panel draw rev.			1			Install 45 kva isolation transformer
lew panel schedule dwg.			1			(handling and secure to floor)
Shutdown dwg			1			Install primary & secondary breaker
AC power CWD for panel/xfm	r		1			Install new panelboard
5 rack ac power CWDs			3			(assemble & install branch breakers)
Heater power from rack to connector			-			Install conduit between xfmr and breaker Enclosures
Wiring diagrams & termination details						Install ac power conductors & terminate
						Install power and instrument dedicated trays
Thermocouple wiring from rack to Machine and termination details			4			around top and bottom of machine
			3			Fabricate & Install tray support system
Tray test cell plan drawing			-			Install rack power conduit
JHA, procedure, ECN, work order			3			Install 2-trays from machine to racks Install 5 racks insulated to 5KV
Package issue and field walk down			2			Install 5 racks insulated to 5K V
	Design Man Days	0) 34		0	
						Hi-pot racks to verify isolation (coordinate with TC work)
PROCUREMENT		eng	dsn	sr lab	tech	Install rack power wire 1/c #10
AC Power	F.Jones/tech shop	-				
Order Breakers, Panels, Pwr cable, field cables, x-forme		rs	1		_	Install heater power from panel to rack (30-120v circuits-fan out at racks)
Fray/Conduit	F.Jones/tech shop	1	-			Install/terminate heater power from racks to
Order tray/ conduit			1		_	Machine via tra 12
Material research	F.Jones				_	Install/terminate thermocouple extension
Waterial research	1.501165					Wire from rack to machine
	Des sum sur Maria Davis					
	Procurement Man Days	0) 3		0	Revision/Construction Supervision 5
FABRICATION		eng	dsn	sr lab	tech	
Tray Conduit prefab	Tech shop	Sirg	3311		leon	eng dsn srlab tech
						TOTAL AC Pwr/Fld Man Days 0 42 0
						Man Hr 0 336 0
						Man Month 0 2.1 0

Total Costs- M&S and Labor

NCSX RESISTANCE HEATING TEMPERATURE CONTR	OL SYS	ГЕМ		
MATERIALS & SUPPLY	Quantity	units	unit cst	Total
Ray G estimate				
A-B PLC hardware, Software, I/O modules, term blks				
Control PC/Displays, Network modules,				
Heater Drive components and Field Cable connectors				\$211,26
F.Jones estimate				
AC power, breakers, enclosures, panels, x-formers, wiring	l			
Cable tray, conduit, TC/Htr Field cables				
Rack filters, fans and installation materials				\$42,89
TOTAL Materials cost (unloaded)				\$254,15
TOTAL LABOR ESTIMATE				
Instrumentation & Control	eng	dsn	sr lab	tech
Computer Div. / R.Gernhardt / Electrical Tech				
Includes Design, Procurment, Fabrication and Installatior	n			
Man Days	5 17	7 0	95	19
AC Power, Field/Rack/Tray Wire				
F.Jones- Design/Drafting / Electrical Tech (Tech Sho	p)			
Includes Design, Procurment, Fabrication and Installation	h			
Man Days	s () 42	0	12 [,]
LABOR Totals (I&C + AC PWR)	eng	dsn	sr lab	tech
TOTAL Man Days				14
		-		

ESTIMATE BASED ON:									
1) PLC feedback control system to									
maintain port temperatures during stanby									
and bakeout operations.									
2) 120 zones of ACTIVE heater									
temperature control.									
3) 282 thermocouple channels available for									
monitoring and feedback control of									
vacuum vessel and port extension									
temperatures.									
4) Archival of TC temperatures and heater									
power in central I&C.									
ESTIMATE INCLUDES:									
1) AC power labor and M&S costs.									
2) PLC programming and M&S costs									
3) Rack installations and wiring cost									
4) Includes TC/Htr Field cabling and									
terminination costs from control racks									
to feedthru ports at vessel.									
5) Test and commissioning costs.									
COSTS NOT INCLUDED:									
1) Control room PCs (2?) computer division									