TO: A. vonHalle FROM: P. Sichta

SUBJECT: Closeout note for Real Time Plasma and Power Supply Control, Job 5501

Date: July 23, 2008

Scope

- For CD-4/MIE, the control system must provide synchronized control signals for the (approx.) seven NCSX power supplies, and one gas injector.
- The control methodology will be open-loop; no feedback will be used to modify the computer's outputs.
- WBS4 will specify the detailed requirements for power supply control. WBS2 will provide the detailed requirements for gas injection control.

Status

• This job has completed the CDR phase, but awaits a PDR based upon the approved workscope.

Interfaces

WBS55 will interface with WBS4.

Specifications

An SDD and Data Dictionary have been completed and are on the NCSX website.

Schematics and PIDs

none.

Models

none.

Drawings

none.

Analyses

none.

Testing

none.

Costs

Costs are posted on the NCSX website.

Remaining Work

• PDR, FDR, Installation and test.

Lessons Learned:

none.

Conclusion:

Upon job resumption, review current technologies and proceed to PDR.

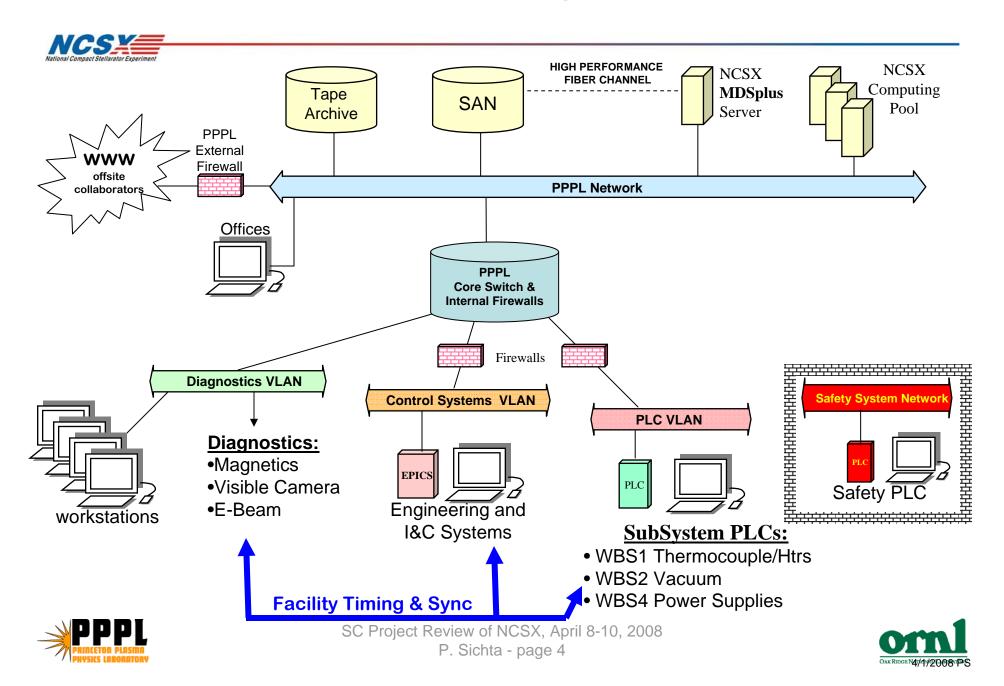
Central Controls and Computing WBS53-57

P. Sichta
WBS5 Work Package Manager

Agenda

- Introduction
- Requirements and Interfaces
- Cost and schedule
- Risks and mitigation
- Responses to past review recommendations

Introduction


Central Controls and Computing will provide the equipment and services to support: 1) integrated and remote control; 2) data acquisition, analysis, and storage; 3) facility timing and synchronization; 4) central safety and interlocks.

- Network and Fiber Optic Infrastructure (WBS 51)
- Central Instrumentation and Control (WBS 52)
- Data Acquisition and Facility Computing (WBS 53)
- Facility Timing and Synchronization (WBS 54)
- Real-Time Plasma and Power Supply Control (WBS 55)
- Central Safety and Interlock System (WBS 56)
- Management and Integration (WBS 58)

NCSX Computing Overview

Requirements

- An NCSX System Design Description (SDD) was written in 2003, before CD-2. The primary elements of that design remain intact.
- My current estimate is derived from the SDD, ongoing technical discussions and design reviews, and recent experience with similar systems on NSTX.
- A WBS5 System Requirements Document (SRD,BSPEC) will be reviewed and approved prior to the *Preliminary Design Review* for each WBS5 element.
- Design Complexity & Maturity
 - Many of the technologies for WBS5/NCSX are currently in use on NSTX, so complexity is low for our experienced staff.
 - The current workscope has completed neither Preliminary nor Final design, so the maturity is medium.

CD-4 Interface List

WBS51 Network & Fiber Optic	WBS1 Thermocouple/Heater Local I&C WBS2 Vacuum/Fueling Systems WBS3 Diagnostics WBS4 Power Systems	
WBS52 Central I&C	WBS1 Thermocouple/Heater Local I&C WBS2 Vacuum/Fueling Systems WBS4 Power Systems	
WBS53 Data Acquisition and Management	WBS1 Thermocouple Local I&C WBS2 Vacuum/Fueling Systems WBS3 Diagnostics WBS4 Power Systems	
WBS54 Timing & Synchronization	WBS3 Diagnostics WBS4 Power Systems	
WBS55 Real-Time Control	WBS2 Vacuum/Fueling Systems WBS4 Power Supply Control	
WBS56 Central Safety and Interlocks	Access Control: WBS4 Power System Areas, WBS7 Test Cell. SubSystem Interlocks: WBS4 Power Systems. NCSX (Global) E-Stop.	

Basis of Estimate

Labor:

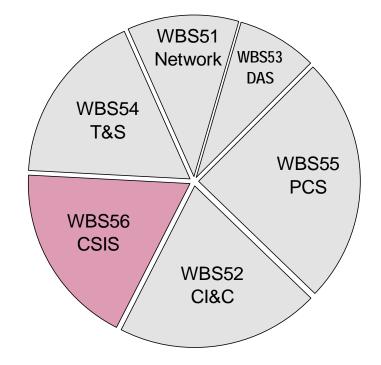
- referenced actual engineering hours from FY97-99 for the NSTX first plasma.
- experience with similar activities for NSTX.
- 'expert' estimates (e.g. Erik Perry).

M&S

- recent purchase of parts for NSTX and other lab infrastructure projects.
- catalog prices.
- includes spares and service contracts.
- selective use of NSTX equipment.

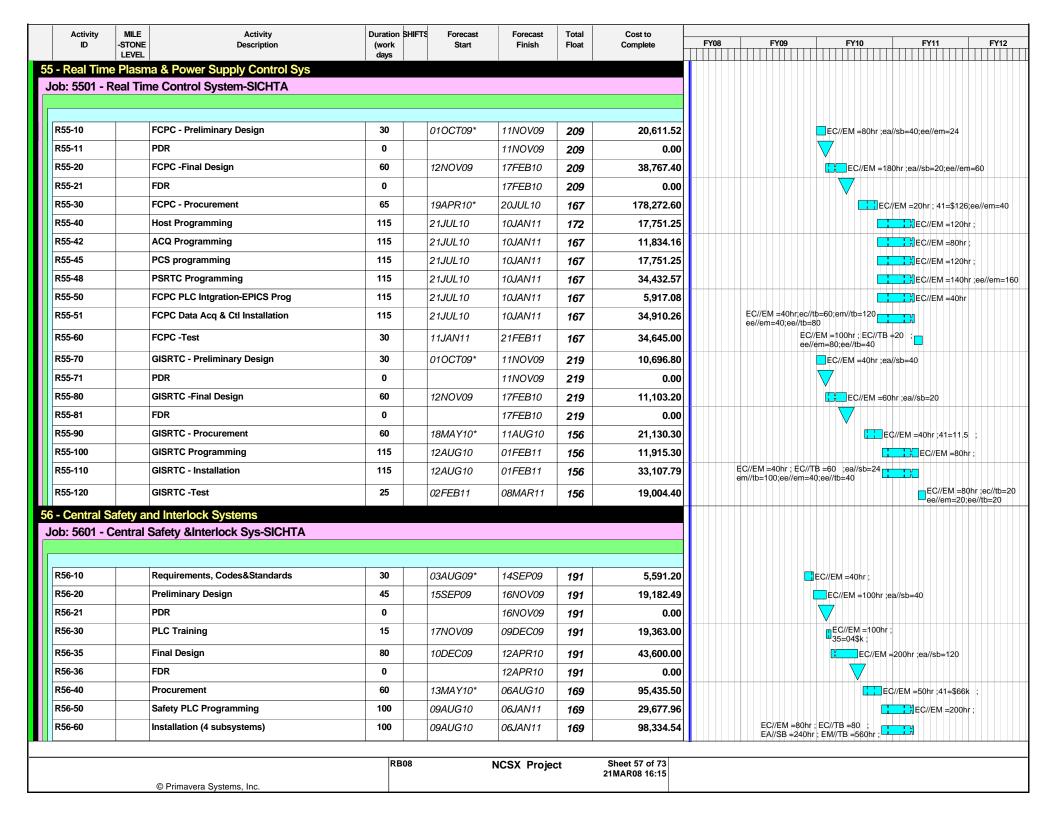
WBS5 Aggregate Cost

Reference WAFs for labor and M&S detail for WBS51-58.

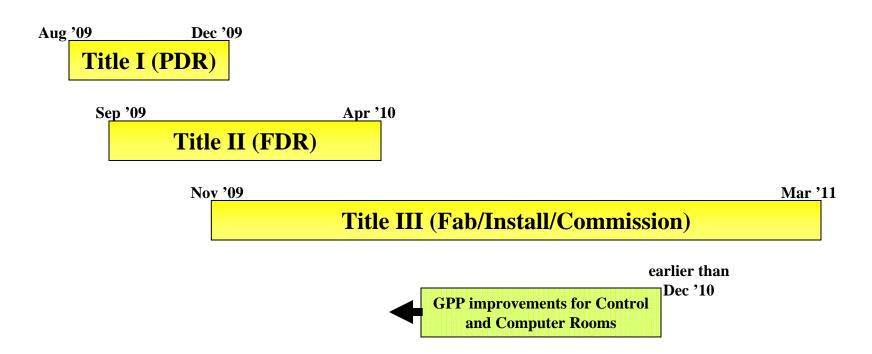

http://ncsx.pppl.gov/Rebaseline/Rebaseline_index.htm

WBS5 ETC = \$ **2.1** M

Softwr/Elec Engineering: 3.6 years


Elec/Mech/Draft Tech: 3.1 years

'Materials & Services': \$432 K



WBS51-WBS56 Aggregate Schedule

Reference *Resource Loaded Schedule* pages 53-56 for schedule detail for WBS51 – WBS58.

http://ncsx.pppl.gov//Reviews/FY08/BCP_2008/Docs/NCSX_RLS0403.pdf

Risks and Mitigation

Reference NCSX Risk Register (page 2, item 'e') for WBS5 risks.

http://ncsx.pppl.gov//Reviews/FY08/BCP_2008/Docs/RR_Rev28a.pdf

Risk Description	Mitigation Plan	Likelihood	Consequence	Risk Ranking
Loss of staff with experience in specialized software will delay availability of Central I&C system.	Staff have recently been brought on board in anticipation of growing NCSX I&C needs. The planned shutdown of NSTX after FY10 will increase the availability of similar resources for NCSX.	VU	Marginal	Low

Response to Past Review Findings

1. Work with ES&H on Safety System Requirements and design basis.

 PPPL's ES&H Directives Manual, section 2-5 "Personnel and Safety Interlock Systems" is in the process of being updated.

2. Document Basis of Estimate

- A WBS5 notebook has been prepared to compile the design basis.
 - Copies of recent requisitions for similar equipment.
 - Catalog cut-sheets with prices.
 - Actual NSTX engineering-hours (labor) tabulation for first plasma.

Conclusion

The NCSX central controls and computing are similar in both function and scale to NSTX. The availability of a technically diverse and experienced staff provides confidence that the WBS5 work elements will effectively support the NCSX project's CD-4 objectives.

