

NCSX Progress

Hutch Neilson, NCSX Project Manager

NCSX partners:

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory

Briefing for Don Erbschloe Princeton Plasma Physics Laboratory September 12, 2005

NCSX Progress in Fabrication and Risk Reduction

NGSX

Topics

- Project Objectives
- Component Fabrication
 - Progress
 - Schedule issues, resolution, and recovery plans.
- Project Management highlights:
 - Safety management
 - Risk management

Key points

- Component deliveries are late but vendor issues are getting resolved.
- Project has a sound plan to get back on schedule and meet baseline objectives.
- We support DOE safety and project management improvement priorities.

NCSX Benefits to the Fusion Program

NCSX

Stellarators solve critical problems for magnetic fusion.

- Steady state without current drive.
- Stable without feedback control or rotation drive. No disruptions.
- Unique flexibility to resolve 3D plasma physics issues for magnetic confinement.

U.S. focuses on *Compact* Stellarators.

- Lower aspect ratio than other stellarators.
- Magnetic quasi-symmetry:
 - overlap with tokamak physics- makes full use of tokamak advances, including ITER's.
 - tokamak-like confinement.

3D geometry produces benefits and costs. We will quantify both.

NCSX Mission

- Attractiveness of compact stellarator for MFE.
- 3D physics for fusion and basic science.

Plasma and Coil Design for the National Compact Stellarator Experiment (NCSX)

NCSX Project is More Than 1/3 Complete

NCSX

Scope

- Fabricate & install stellarator.
- Adapt existing operational infrastructure to NCSX needs.
- Test system and make first plasma.

Schedule and cost

- April, 2003 July, 2009 (76 months)
- TEC \$92.4M

Status

- CD-3 was approved and both major component fabrication contracts were placed Sept., 2004.
 - First delivery expected this month.
- Work performed to date \$35.0M (38% of TEC)

Major Radius 1.4 m Magnetic Field 2.0 T Pulse length ~1 s

NCSX Uses Existing Fusion Program Infrastructure to Reduce Costs

NCSX Engineering is Based on a Robust Concept

MCWF Deliveries Are 4 Months Late, But First-Unit Fabrication Issues are Being Resolved.

18 forms (3 shapes- A, B, C). Status:

- 3rd pattern (the last) ships to foundry this week.
- 7 castings have been poured (all 6 C's, 1 A).
- 3 are in machining.
- Forecast #1 delivery Sept. 23 (19 weeks late).
- Forecast #2 delivery Oct. 14 (13 weeks late).

Vendor's initial plans had to be modified to overcome issues which delayed #1 at each manufacturing step.

- Pattern-making (2 week delay)
 - now well off critical path and nearly complete.
- Casting (4 weeks delay)
 - pattern was re-worked to optimize alloy feed, reduce post-processing requirements.
- Machining (13 weeks delay)
 - hundreds of machine programs were revised to improve contour machining efficiency.

High quality is being maintained.

MCWF casting ready for machining

MCWF being machined

Some MCWF Manufacturing Challenges Remain, but Vendor Schedule Performance is Recovering

Progress...

- Patterns are nearly complete.
 - First two have been successfully used. Last is in final inspection.
- Castings are being poured at a rate consistent with EIO's baseline delivery schedule.
- Casting post-processing times still need improvement.
 - Issues are now production schedule-related, not technical. Receiving plant production manager's attention and priority.
- Machining times have improved dramatically.
 - #1 is through machining, in final inspection and testing.
 - #2 is progressing with no recurrence of #1 problems. Developed solutions are working.
 - Forecast 15 weeks to machine #2 vs. 25 weeks for #1.
 - Expect first of each type will require some extra development time, with learning-curve improvements thereafter.

MCWF Delivery Delays Are Accommodated within the Project Baseline

NGSX

- EIO is working to get back to their original schedule (≧), but project baseline (★) does not count on it. Current plan* can even absorb further delay (○).
- We will miss our FY-05 Joule target (wind 1st coil) by no more than 3 months.
- We maintain our CD-4 schedule (July, 2009) with 5 mos. contingency.

Vacuum Vessel Fabrication

NCSX

- Shell geometry similar to plasma's.
- Panels are press-formed, welded together into sectors.
- First 120-degree sector has been welded.
- Port fabrication is in progress.

Coil Winding Preparations

NCSX

- "Twisted racetrack" R&D coil was successfully fabricated.
 - Demonstrated all critical manufacturing operations.
 - Trained the staff.
 - Made changes in design details that improve manufacturability.
 - o Resulting Title II design delays are accommodated by our plans.
- We are ready to wind modular coils as soon as MCWF#1 arrives.
- TF coils will also be wound at PPPL.
 - Minimizes quality risks.
 - Conductor ordered, winding table installed.

Coil Winding is Off to a Late Start But We Have a Sound Plan to Get Back on Schedule

NGSX

Safety is Integrated into NCSX Work at All Levels

NGSX

- Job Hazard Analysis checklist used for all field tasks.
- All staff taking Hazard Awareness Training (JHA-based) to improve understanding of NCSX hazards.
- Lab Activity Certification Committee (ACC) reviews NCSX manufacturing and test facilities and associated procedures prior to operation.
- Safety is addressed in design reviews and influences choices (e.g., hazards of thermal insulation options; hoisting & rigging hazards in assembly operations).
- IPT reviews or participates in safety activities as part of its management duties.
- Project organization is structured to promote safety management.
 - New NCSX on-site fabrication organization is led by a PPPL fabrication division head.
- Safety, cost, and schedule objectives are mutually supportive, not in conflict.
 - Work is done according to documented plans and procedures.
 - Project organization keeps safety, cost, and schedule responsibilities in alignment.

NCSX Project Organization

Project Risk Management Follows 413.3

NCSX

- Key technical risks (challenging geometries and tolerances) were identified during the planning stage.
 - No new risks of comparable significance have emerged.
- Risk mitigation plans, included in the baseline from the beginning, are succeeding.
 - Manufacturing processes have been developed through R&D.
 - System engineering program has maintained good control of requirements and configuration design.
 - o Have avoided performance compromises and costly re-engineering.
- IPT's risk management approach is working well.
 - Continually identify, assess, and track risks using dynamic Critical Issues List.
 - Continually mitigate cost/schedule risks through value engineering and planning improvements.
 - Apply contingency when risks are retired.

Progress in NCSX Design, R&D, and Production has steadily improved plans and reduced risks.