To: Mike Zarnstorff
From: Wayne Reiersen
Subject: Re-using the NSTX PF1A coils
I took a quick look at using the two NSTX PF1A coils in place of new PF1-3 coils. The results actually look quite promising. The NSTX PF1A coil is a two layer solenoid coil that is 21.383 " tall, 1.786 " thick with 48 turns. The radius to the current centroid is 7.24 ". It uses the same conductor that we were planning to use on PF1-3, namely a 0.787 " square conductor with a 0.354 " diameter cooling hole.

I located the current centroid 0.4 m off the midplane. I get a fair OH distribution using just the new PF1, PF4, and PF6 coils. The following current distribution provides 1Vs of linked flux to a circular current loop at 1.4 m .

Coil	I (MAT)	Turns	I (A)
PF1	6.49	48	135169
PF4	1.79	80	22397
PF6	0.03	14	1870

The stray field is less than 2 gauss on the midplane between 1.0 m and 1.8 m with the 1 Vs current distribution. At the maximum currents required for the First Plasma scenario (PF1 has a maximum current of 18279 A) the stray field is only 0.27 gauss.

I did not run the ENERGIES code to recalculate the new single turn mutual inductance between the new PF1 and the modular coils and plasma. Rather, I used the old PF1 values for the modular coils and I calculated the mutual between the new PF1 and a current loop at 1.4 m for the PF1 to plasma mutual.

Running the scenario exactly as before resulted in problems with the current in PF1 (the max current was 20.2 kA compared to the power supply capability of 5 kA) and the voltage in PF4 (the voltage was 738 V compared to the power supply capability of 500 V). These problems can be addressed as follows:

1. Increase the current ramp time from 70 ms to 100 ms .
2. Decrease the assumed resistive consumption in the plasma from 1.0 V to 0.6 V . (With these two changes, the average applied loop voltage during the current ramp decreases from 2 V to 1.3 V which is still better than the maximum of 1 V that W7AS was able to live.)
3. Put all four Robicon-5 units (5kA and 300V) - two from the old PF1/2 circuit, one from the old TF circuit, and one from the old PF3 circuit - in parallel for PF1, thus providing 20kA and 300 V .
4. Move Robicon-10 (10kA and 200V) from PF6 to the TF.
5. Buy a tiny new power supply for PF6 that provides at least 253A and 32V. (Sounded like three car batteries to Raki if regulation was not critical. Alternatively, we could just get rid of the TF circuit for First Plasma as originally proposed and keep the Robicon-10 in the PF6 circuit.)

Please run these changes through your simulation code and see if you come to the same conclusions. If we could make this work, it could save big bucks. The new solenoid coils will cost perhaps $\$ 500 \mathrm{~K}$. The CS support structure which costs almost $\$ 200 \mathrm{~K}$ could be greatly simplified to grab only these two coils. The incremental cost to Raki should be less than $\$ 100 \mathrm{~K}$. It is not unreasonable to expect a net savings on the order of $\$ 500 \mathrm{~K}$ if we can make this work. More could be saved if we could get rid of the TF circuit altogether.

There are probably two things that concern you. One is dropping the loop voltage from 2 V to 1.3 V . We could probably get this back by reducing the ramp time back closer to 70 ms but not pushing quite so much current through PF4. It changes the equilibrium but it would probably be OK. Your second worry might be not having enough volt-seconds. My vote for this would be to wind two new PF1A coils EXACTLY like the ones that were would for NSTX with no change in design or tooling or personnel. That would give us ample volt-seconds at minimum cost.

I attached my current waveforms and coil (not circuit) inductance matrices for your reference along with some graphs of my simulation. The TF and modular coil currents did not change. The simulation features a 10 ms plasma current flattop. Your thoughts would be appreciated. Please let me know if you uncover any errors that would undermine my conclusions.

Old coil inductance matrix

Multi-turn coil inductance matrix											
	M1	M2	M3	PF1	PF2	PF3	PF4	PF5	PF6	TF	Plasma
M1	1.236E-02	$2.825 \mathrm{E}-03$	$1.254 \mathrm{E}-03$	-5.521E-05	$9.153 \mathrm{E}-06$	$3.783 \mathrm{E}-05$	$1.219 \mathrm{E}-04$	-2.287E-04	-2.818E-04	$8.676 \mathrm{E}-03$	-1.631E-05
M2	$2.825 \mathrm{E}-03$	$9.234 \mathrm{E}-03$	$2.324 \mathrm{E}-03$	$2.214 \mathrm{E}-05$	-1.035E-05	-5.070E-06	-1.274E-05	-4.515E-05	-6.266E-05	$6.683 \mathrm{E}-03$	-1.079E-05
M3	$1.254 \mathrm{E}-03$	$2.324 \mathrm{E}-03$	7.903E-03	$1.023 \mathrm{E}-04$	-8.504E-06	-3.480E-05	-1.656E-04	-2.030E-04	-6.188E-05	$4.675 \mathrm{E}-03$	-8.599E-06
PF1	-5.521E-05	$2.214 \mathrm{E}-05$	$1.023 \mathrm{E}-04$	$3.030 \mathrm{E}-03$	$4.763 \mathrm{E}-04$	$7.205 \mathrm{E}-05$	$1.470 \mathrm{E}-04$	$1.679 \mathrm{E}-04$	1.188E-04	$0.000 \mathrm{E}+00$	$8.924 \mathrm{E}-06$
PF2	$9.153 \mathrm{E}-06$	-1.035E-05	-8.504E-06	$4.763 \mathrm{E}-04$	$2.626 \mathrm{E}-03$	$4.276 \mathrm{E}-04$	3.222E-04	$1.754 \mathrm{E}-04$	$1.141 \mathrm{E}-04$	$0.000 \mathrm{E}+00$	$6.785 \mathrm{E}-06$
PF3	$3.783 \mathrm{E}-05$	-5.070E-06	-3.480E-05	7.205E-05	$4.276 \mathrm{E}-04$	$2.613 \mathrm{E}-03$	$1.138 \mathrm{E}-03$	$1.817 \mathrm{E}-04$	$1.044 \mathrm{E}-04$	$0.000 \mathrm{E}+00$	$4.404 \mathrm{E}-06$
PF4	$1.219 \mathrm{E}-04$	-1.274E-05	-1.656E-04	$1.470 \mathrm{E}-04$	3.222E-04	$1.138 \mathrm{E}-03$	$1.529 \mathrm{E}-02$	$1.135 \mathrm{E}-03$	$5.895 \mathrm{E}-04$	$0.000 \mathrm{E}+00$	$1.816 \mathrm{E}-05$
PF5	-2.287E-04	-4.515E-05	-2.030E-04	$1.679 \mathrm{E}-04$	$1.754 \mathrm{E}-04$	$1.817 \mathrm{E}-04$	$1.135 \mathrm{E}-03$	$1.287 \mathrm{E}-02$	3.493E-03	$0.000 \mathrm{E}+00$	$4.805 \mathrm{E}-05$
PF6	-2.818E-04	-6.266E-05	-6.188E-05	1.188E-04	$1.141 \mathrm{E}-04$	$1.044 \mathrm{E}-04$	5.895E-04	3.493E-03	$6.259 \mathrm{E}-03$	$0.000 \mathrm{E}+00$	$3.968 \mathrm{E}-05$
TF	8.676E-03	6.683E-03	$4.675 \mathrm{E}-03$	0.000E+00	0.000E+00	$0.000 \mathrm{E}+00$	0.000E+00	0.000E+00	$0.000 \mathrm{E}+00$	$4.898 \mathrm{E}-02$	$1.510 \mathrm{E}-06$
Plasma	-1.631E-05	-1.079E-05	-8.599E-06	8.924E-06	$6.785 \mathrm{E}-06$	$4.404 \mathrm{E}-06$	1.816E-05	$4.805 \mathrm{E}-05$	3.968E-05	$1.510 \mathrm{E}-06$	$2.679 \mathrm{E}-06$

New coil inductance matrix

Multi-turn coil inductance matrix											
	M1	M2	M3	PF1	PF2	PF3	PF4	PF5	PF6	TF	Plasma
M1	$1.236 \mathrm{E}-02$	$2.825 \mathrm{E}-03$	$1.254 \mathrm{E}-03$	-3.681E-05	0.000E+00	$0.000 \mathrm{E}+00$	$1.219 \mathrm{E}-04$	0.000E+00	-2.818E-04	$8.676 \mathrm{E}-03$	-1.631E-05
M2	$2.825 \mathrm{E}-03$	$9.234 \mathrm{E}-03$	$2.324 \mathrm{E}-03$	1.476E-05	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	-1.274E-05	$0.000 \mathrm{E}+00$	-6.266E-05	$6.683 \mathrm{E}-03$	-1.079E-05
M3	$1.254 \mathrm{E}-03$	$2.324 \mathrm{E}-03$	7.903E-03	$6.823 \mathrm{E}-05$	0.000E+00	$0.000 \mathrm{E}+00$	-1.656E-04	$0.000 \mathrm{E}+00$	-6.188E-05	$4.675 \mathrm{E}-03$	-8.599E-06
PF1	-3.681E-05	$1.476 \mathrm{E}-05$	6.823E-05	7.910E-04	-3.079E-11	-5.157E-11	8.583E-05	$1.510 \mathrm{E}-09$	$5.486 \mathrm{E}-05$	0.000E+00	4.057E-06
PF2	0.000E+00	0.000E+00	$0.000 \mathrm{E}+00$	-3.079E-11	$2.610 \mathrm{E}-03$	-3.308E-11	$1.004 \mathrm{E}-11$	1.667E-09	$3.403 \mathrm{E}-10$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
PF3	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	-5.157E-11	-3.308E-11	$2.610 \mathrm{E}-03$	-6.967E-11	$1.967 \mathrm{E}-10$	$8.595 \mathrm{E}-11$	0.000E+00	0.000E+00
PF4	1.219E-04	-1.274E-05	-1.656E-04	8.583E-05	$1.004 \mathrm{E}-11$	-6.967E-11	$1.529 \mathrm{E}-02$	2.053E-08	$5.895 \mathrm{E}-04$	0.000E+00	1.816E-05
PF5	0.000E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$1.510 \mathrm{E}-09$	$1.667 \mathrm{E}-09$	$1.967 \mathrm{E}-10$	$2.053 \mathrm{E}-08$	$1.212 \mathrm{E}-02$	$9.688 \mathrm{E}-08$	0.000E+00	$0.000 \mathrm{E}+00$
PF6	-2.818E-04	-6.266E-05	-6.188E-05	$5.486 \mathrm{E}-05$	$3.403 \mathrm{E}-10$	$8.595 \mathrm{E}-11$	5.895E-04	$9.688 \mathrm{E}-08$	$6.259 \mathrm{E}-03$	0.000E+00	3.968E-05
TF	8.676E-03	$6.683 \mathrm{E}-03$	$4.675 \mathrm{E}-03$	$0.000 \mathrm{E}+00$	0.000E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$4.898 \mathrm{E}-02$	1.510E-06
Plasma	-1.631E-05	-1.079E-05	-8.599E-06	4.057E-06	0.000E+00	0.000E+00	1.816E-05	$0.000 \mathrm{E}+00$	$3.968 \mathrm{E}-05$	$1.510 \mathrm{E}-06$	2.679E-06

Old current waveform

Current waveforms (A)											
t(s)	M1	M2	M3	PF1	PF2	PF3	PF4	PF5	PF6	TF	Plasma
0.5T First Plasma Scenario											
-1.550	0	0	0	0	0	0	0	0	0	0	0
0.000	10000	10000	10000	0	0	0	0	0	0	93	0
0.050	10000	10000	10000	0	0	0	0	0	0	93	0
0.120	10000	10000	10000	4869	4869	4869	1478	0	385	93	-25999
0.123	10000	10000	10000	4973	4973	4973	1510	0	393	93	-25999
0.130	10000	10000	10000	5217	5217	5217	1584	0	413	93	-25999
Waveform max (A)	10000	10000	10000	5217	5217	5217	1584	0	413	93	0
Waveform min (A)	0	0	0	0	0	0	0	0	0	0	-25999

New current waveform

Current waveforms (A)											
t(s)	M1	M2	M3	PF1	PF2	PF3	PF4	PF5	PF6	TF	Plasma
0.5T First Plasma Scenario											
-1.550	0	0	0	0	0	0	0	0	0	0	0
0.000	10000	10000	10000	0	0	0	0	0	0	93	0
0.050	10000	10000	10000	0	0	0	0	0	0	93	0
0.149	10000	10000	10000	17445	0	0	2891	0	241	93	-25999
0.152	10000	10000	10000	17688	0	0	2931	0	245	93	-25999
0.159	10000	10000	10000	18256	0	0	3025	0	253	93	-25999
Waveform max (A)	10000	10000	10000	5217	5217	5217	1584	0	413	93	0
Waveform min (A)	0	0	0	0	0	0	0	0	0	0	-25999

PF1a study

December 2004

Baseline Coil Configuration

- First plasma scenario
- PF1-6 are powered independently in the model
- In actuality...
- PF1-2 are in series. Need to add PS voltages to get right answer.
- PF 5 is open circuited. Ignore PS voltage required to maintain zero current at breakpoints.

PS Requirements

PS Voltage

PS Current

Coil Current

Coil Temperature

New configuration with NSTX PF1

- PF1 centroid located 0.4 m off midplane
- Calculated single turn mutual inductance between plasma and new PF1 based on circular loop at 1.4m. Used same mutual between PF1 and modular coils. New calculation required.
- PF2-3 gone
- In the model, power supplies targeted for zero current.
- Same scenario. Plasma IR drop of 1V assumed. Loop voltage is 2 V .

PS Requirements

PS Voltage

PS Current

Coil Current

Coil Temperature

Problems...

- PF4 requires 4kA and 738 V compared to the 5 kA and 500V available from the UCLA supply
- Decrease resistive consumption from 1 V to 0.6 V
- Increase current ramp time from 70 ms to 100 ms (solves PF4 problem)
- Net change in Vs is -0.01 Vs
- PF1/2 requires 21 kA and 370 V compared to the 5 kA and 600 V available from 2 Robicon-5 PS in series
- Move Robicon-10 (10kA and 200V) from PF6 to TF
- Put all four Robicon-5 units (5kA and 300V) in parallel for PF1/2 creating a 20kA 300 V PS
- Buy a new 50 V 300A supply for PF6 (or better yet, get rid of the TF circuit and keep the Robicon-10 for PF6)

PS Requirements

PS Voltage

PS Current

Coil Current

Coil Temperature

Results

- PF1 - max I, V is $18.3 k A$ and 240 V compared to 20kA and 300V
- PF4 - max I, V is 3.0kA and 483 V compared to 5kA and 500V
- PF6 - max I, V is 253A and 32V which can be provided by 3 car batteries (or by getting rid of the TF circuit and using the Robicon-10)

