2-D Thermal Analyses for Alternative Cooling Designs

H. M. Fan PPPL November 30, 2001

Finite Element Model

- 2-D model
- Half symmetric model is used
- T-shape is cast into the shell
- Cable contains 75% of copper and 25% of epoxy
- 0.040 inches of insulation thickness
- 0.085 inches of septum thickness

Basic Model - Model A

Cryogenics Material Properties

• Specific Heat (J/kg-K)

	80K	100K	150K	200K
Cable	171.4	212.3	270.1	300.7
Septum	205.1	255.3	324.1	359.0
Insulation 348.9	413.7	537.0	626.8	
Shell & T-beam	215.3	275.5	362.1	416.4

• Thermal Conductivity (W/m-K)

	80K	100K	150K	200K
Cable	397.0	346.2	313.7	305.2
Septum	529.3	461.5	418.1	407.0
Insulation 0.128	0.142	0.163	0.175	
Shell & T-beam	8.114	9.224	11.17	12.63

Note: Cable contains 75% of copper and 25% of epoxy

Coil Currents and Ohmic Heating

 Current profile from web address: http://www.pppl.gov/me/NCSX_Engineering/Technical_Data/MOD00/Inputs_1.7T.htm

Coil				Time (s)					
	-1.8	-1.5	0	0.1	0.158083	0.258083	0.458083	1.658083	1.958083
M1	0	0	19832	19832	16897	17907	17907	0	0
M2	0	0	18553	18553	16574	17649	17649	0	0
М3	0	0	19189	19189	17158	18352	18352	0	0
M4	0	0	20287	20287	16626	17755	17755	0	0

Turn Current Profile of Modular Coil (A)

Power of ohmic Heating (W/m^3)

Time (s)	-1.8	-1.5	0	0.1	0.158083	0.258083	0.458083	1.658083	1.958083
μ (ohm-m)	2.36E-09	2.36E-09	3.52E-09	3.78E-09	3.91E-09	4.11E-09	4.55E-09	5.52E-09	5.52E-09
M1	0.00E+00	0.00E+00	3.41E+07	3.66E+07	2.75E+07	3.24E+07	3.59E+07	0.00E+00	0.00E+00
M2	0.00E+00	0.00E+00	2.98E+07	3.20E+07	2.64E+07	3.15E+07	3.49E+07	0.00E+00	0.00E+00
М3	0.00E+00	0.00E+00	3.19E+07	3.42E+07	2.83E+07	3.41E+07	3.77E+07	0.00E+00	0.00E+00
M4	0.00E+00	0.00E+00	3.56E+07	3.83E+07	2.66E+07	3.19E+07	3.53E+07	0.00E+00	0.00E+00

• Heat of ohmic heating in one pulse is 6.31 J/m^3 for M4 coil

Transient Thermal Analysis

- Temperature constraint at cooling gas inlet is 80 K.
- The starting temperatures for both the coil and coil structure are 85 K.
- Ambient air temperature is fixed at 85 K.
- The film coefficient is assumed to be 4.0 W/m^2-K.
- The thermal properties for specific heat and thermal conductivity are temperature-dependent.
- Values of cable resistivity depend on the M4 coil temperatures which are calculated from adiabatic condition as shown in web address: http://www.pppl.gov/me/NCSX_Engineering/Technical_Data/MOD00 /Calculations 1.7T.htm
- Power of ohmic heating calculated for the M4 coil from -1.5 seconds to 1.658083 seconds is used for thermal load input.
- Thermal load varies linearly between two time steps.
- Cooling period between pulses is 15 minutes.

Boundary Conditions for Model A

Temperature vs. Time on selected nodes of Model A

Temperature vs. Time at the 16th Heating Cycle

Temperature Distribution at The First Heating and Cooling Cycles – Model A

Temperature Distribution at The 16th Heating and Cooling Cycles – Model A

Temperature Distribution in Coil Structure and Coil at The End of 16th Cooling Cycles

Septum Placed Between Coil and Coil Structure – Model B

Temperature vs. Time on Selected Nodes of Model B

Temperature Distribution at The 16th Heating and Cooling Cycles – Model B

Temperature Constraint on Center Line of T-Shape Coil Structure – Model C

Temperature vs. Time on Selected Nodes of Model C

Temperature Distribution at The 10th Heating and Cooling Cycles – Model C

Cooling Septum Wrapping Around Coils – Model D

Temperature vs. Time on Selected Nodes of Model D

Temperature Distribution at The 10th Heating and Cooling Cycles – Model D

ANSYS 5.6.2 NOV 29 2001 14:27:24 NODAL SOLUTION STEP=70 SUB = 4TIME=9032 TEMP (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES-Mat SMN =80 SMX =85.024 80 80.558 81.116 81.675 82.233 82,791 83.349 83,907

84.465

Cooling Septum Wrapping Around Coils – Model E

Temperature vs. Time on Selected Nodes of Model E

Temperature Distribution at The 10th Heating and Cooling Cycles – Model E

ANSYS 5.6.2 NOV 29 2001 18:26:11 NODAL SOLUTION STEP=69 SUB =3 TIME=8132 TEMP (AVG) RSYS=0 **PowerGraphics** EFACET=1 AVRES=Mat SMN -80 SMX =128.085 80 85.343 90.685 96.028 101.371 106.714 112.056 117.399 122.742 128.085

ANSYS 5.6.2 NOV 29 2001 18:24:49 NODAL SOLUTION STEP=70 SUB =4 TIME=9032 TEMP (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN =80 SMX =90.048 80 81.116 82.233 83.349 84.466 85.582 86.699 87.815 88.931

90.048