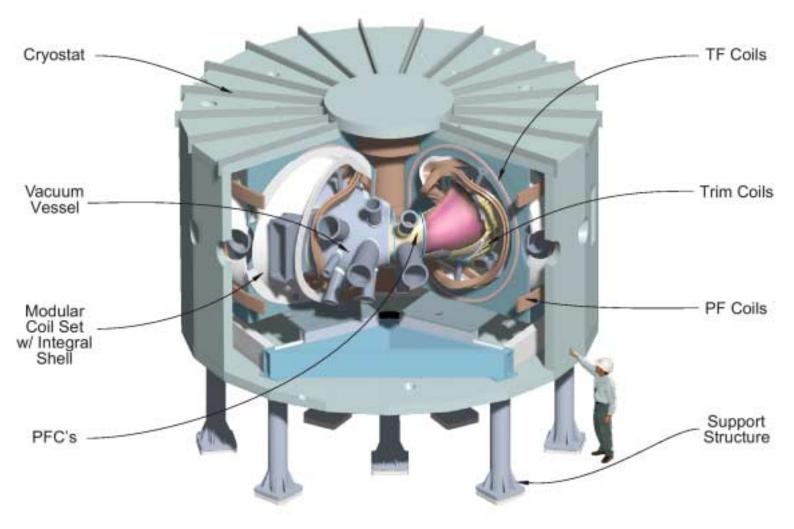
# NCSX CDR kickoff Requirements and Scope for WBS-1, Stellarator Core

M. Cole, B. Nelson, D. Williamson (ORNL) W. Reiersen (PPPL)


> NCSX WBS-1 CDR kickoff October 9, 2001



For each major subsystem:

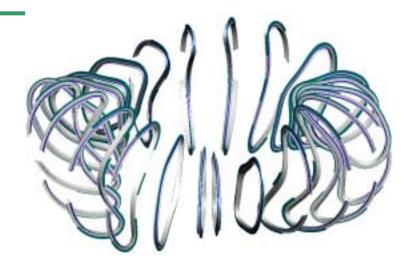
- What is present configuration and scope?
- What are top level requirements?
- What are some of the key issues with respect to:
  - Requirements
  - Design
  - Fabrication
  - Assembly

#### Stellarator core

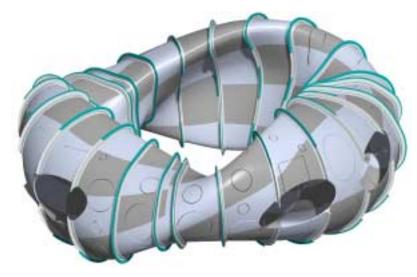


# Priorities for conceptual design were established at PVR

- Involve industry
  - *Fund* participation for manufacturing studies, R&D and prototypes
- Improve modular coil geometry
  - Improve manufacturability, reduce cost, reduce J, eliminate sharp bends, improve access (18 coil solution)
- Optimize design for flexibility
  - Optimize VV shape, liner configuration, and PF coil design
- Optimize design for access
  - Address geometric requirements of diagnostic access, incorporate RF scheme into the engineering design, improve personnel access.
- Finalize requirements
  - Finalize requirements well in advance of CDR (present sched: Dec '01)
  - Establish defensible and achievable dimensional tolerances
- Develop "bottoms up" schedule estimate
  - Need to determine project duration, critical path activities
- Refine cost estimates
  - Pursue cost effective design and manufacturing solutions


#### PFC requirements

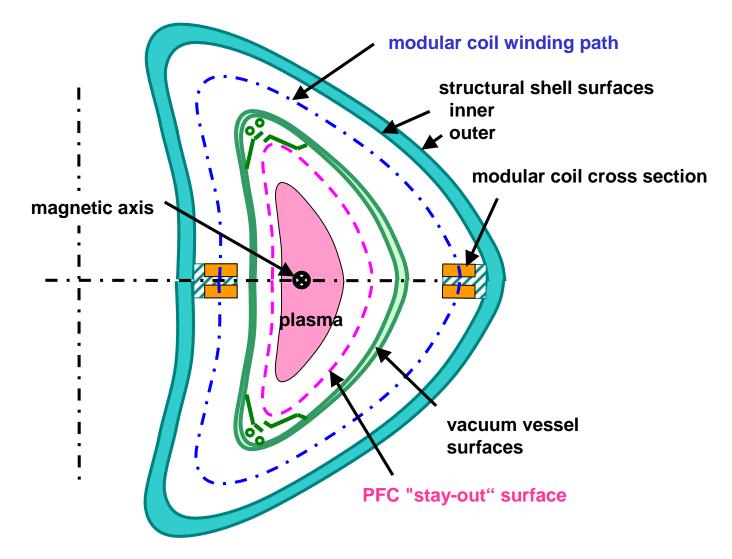
- Basic requirements
  - Carbon based, bakeable to 350C
  - NBI armor needed day 1
  - Trim coil armor
  - Inboard limiter / coverage
  - Divertor plates needed day 1
  - 3 MW for 0.5 s
  - > 60 % of power to divertor region, balance can be intercepted by walls
  - Provide penetrations, accommodate in-vessel diagnostics mounted on VV
- Upgrade requirements
  - Full coverage of surfaces with carbon
  - 12 MW for 1.2 s
  - Provision for divertor pumping
  - Energetic ion loss armor


#### PFC design concept

Poloidal ribs

- Staged implementation planned
  - Initial coverage with low Z tiles mounted on poloidal ribs to form array of poloidal limiters
  - Panels for NB armor and divertor region will also be provided
- Full coverage provided by mounting molded carbon fiber composite (CFC) panels on poloidal ribs
  - Panel size based on advice from BFG aerospace (~ 60 cm square, 1 cm thick)
- Ribs are separately cooled / heated with He gas for bakeout (350C) and normal operation
- Ribs are registered toroidally to VV but allowed to grow radially and vertically




CFC panels mounted on poloidal ribs

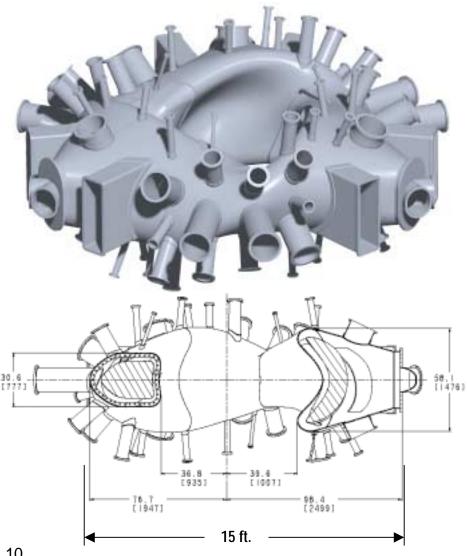


#### PFC issues

| Requirements                                                                                                                                                                                                | Design                                                                                                                                                                                         | Fab.                                                | Ass'y                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <ul> <li>PFC stayout zone</li> <li>divertor geometry</li> <li>In-vessel<br/>diagnostics (e.g.,<br/>magnetic loops)</li> <li>Max plasma<br/>current</li> <li>Divertor pumping<br/>upgrade, if any</li> </ul> | <ul> <li>transition from<br/>day 1 to full<br/>coverage</li> <li>RF launcher<br/>integration with<br/>limiters, diag.</li> <li>trim coil<br/>integration</li> <li>low z rail covers</li> </ul> | <ul> <li>CFC cost</li> <li>Low z coating</li> </ul> | <ul> <li>personnel<br/>access for         <ul> <li>-installation</li> <li>-reconfiguration</li> </ul> </li> </ul> |

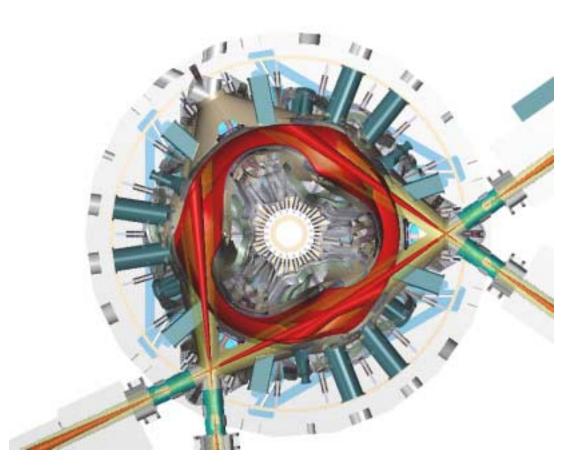
#### Reference geometry definition




#### Vacuum vessel requirements

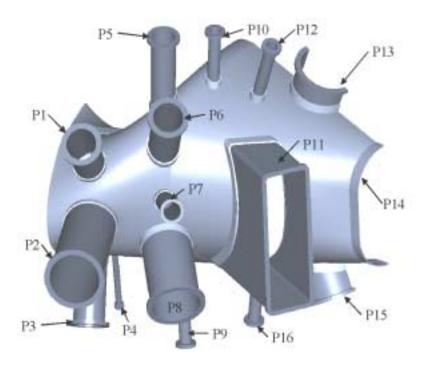
- Vessel must be bakeable to 150 C
- Low permeability (< 1.02 nominal goal)</li>
- Provide as large a volume as possible for plasma shape flexibility and power and particle handling systems, consistent with assembly of modular coils. Must provide space for inboard RF launcher at phi = 60 deg sections
- Provide support for internal components such as internal liner, trim coils, magnetic sensors
- Provide access ports for diagnostics, vacuum pumping, heating systems, and personnel access. Must provide radial diagnostic access at v=1/2 symmetry planes for Thomson scattering and radial diagnostic beam

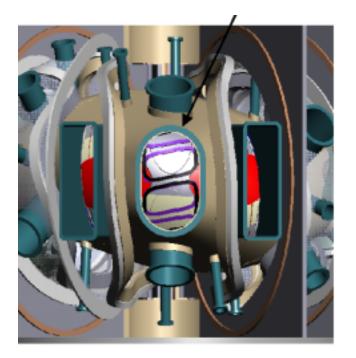
#### Vacuum vessel design concept


**Inconel 625** 

- Shell material
- Thickness .375 inch
- < 10 ms Time constant
- Total wt w/ports ~ 12000 lbs
- Bolted joints connect field periods
- Traced with He gas lines for heating (to 150C) and cooling
- **Combination Microtherm and** Solomide foam insulation between VV and cold mass




#### Access for tangential NBI


- Up to 4 neutral beams in combinations of coand counter-
- Vacuum pumping through NB ducts



#### Diagnostic and personnel access

- 87 separate ports for ~100 different diagnostics
  - The number and sizes of ports appear to match diagnostic requirements
  - Geometric requirements for specific diagnostics will be addressed in more detail during conceptual design
- Personnel access available through NBI or adjacent large ports





#### Vacuum vessel issues

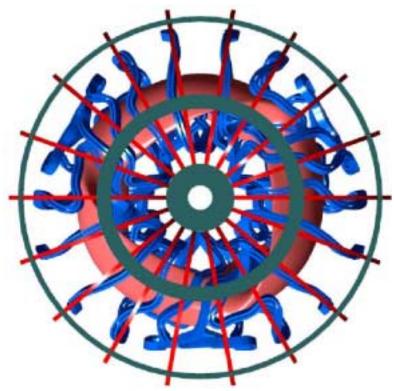
| Requirements                                                                                                                                                                                                    | Design                                                                                                                                                                                                                                                                     | Fab.                                                                                                                                                                         | Ass'y                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>RF launcher<br/>envelope</li> <li>PFC / divertor<br/>envelope</li> <li>Diagnostic views,<br/>incl. symmetry<br/>plane access</li> <li>Maximum plasma<br/>current (greater<br/>than 175 kA?)</li> </ul> | <ul> <li>smoother shape</li> <li>port integration<br/>for diagnostics</li> <li>segmentation</li> <li>field joint flange<br/>envelope</li> <li>stresses /<br/>buckling for<br/>disruption loads</li> <li>mechanics of<br/>describing vessel<br/>shape to vendors</li> </ul> | <ul> <li>Cost within<br/>est.?</li> <li>Process<br/>and<br/>qualified<br/>vendors</li> <li>Geometric<br/>tolerance</li> <li>draft spec.<br/>for procure-<br/>ment</li> </ul> | <ul> <li>sliding coils<br/>over vessel</li> <li>distortion<br/>during and<br/>after port<br/>welding</li> <li>personnel<br/>access for<br/>field joint</li> <li>Leak<br/>checking</li> </ul> |

#### Trim coils – PVR requirements

- Provided to mitigate field errors on m=5 and m=6 resonant surfaces
- Located close to inboard and outboard midplane at v=0 cross-section
- Mounted off vacuum vessel, behind liner
- Canned for vacuum compatibility



# Trim coil issues


| Requirements                                                                                                                                                | Design                                                                                                                                                                                    | Fab.                                                                                | Ass'y                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>number / location<br/>of windings</li> <li>winding geometry<br/>and accuracy</li> <li>number of circuits</li> <li>current<br/>waveforms</li> </ul> | <ul> <li>NBI interface</li> <li>support scheme</li> <li>leads</li> <li>cooling</li> <li>mechanics of<br/>describing<br/>winding shape to<br/>vendors</li> <li>fault conditions</li> </ul> | <ul> <li>canned<br/>coils</li> <li>draft spec.<br/>for procure-<br/>ment</li> </ul> | <ul> <li>Personnel<br/>access for<br/>installation</li> <li>measurement<br/>of coil<br/>location</li> <li>Locational<br/>error<br/>correction</li> </ul> |

#### Modular coil requirements

- Meet performance requirements
  - 1.7 T scenario with 0.46s flattop
  - 1.2 T scenario with 1.24s flattop
  - 2.0 T with reduced external iota
  - 15 minute rep rate (5 minute rep rate for short pulse)
- Provide flexibility
  - Independent control of modular and PF coils provided
  - Variable background TF field
- +/- 1 mm assumed for winding accuracy
- Coils must provide access for tangential NBI, RF, vacuum pumping, diagnostics, and personnel access
- Limit conductor current to ~ 24 kA peak to match with existing TFTR power supplies

# Modular coil configuration

- 18 coils, 3 field periods
- No coils at symmetry planes
- Coils wound with flexible cable conductor into cast-and-machined forms
- Coils pre-cooled to LN<sub>2</sub> temperature to allow high current density



#### Continuous shell forms robust structure

- Shell consists of individual modular coil forms that are bolted together
- Penetrations for access are provided wherever needed
- Preliminary stress analysis of shell has been performed
  - Stresses are well within allowables except for a few localized "hot spots"
  - Local problems can be solved with minor changes in local thickness



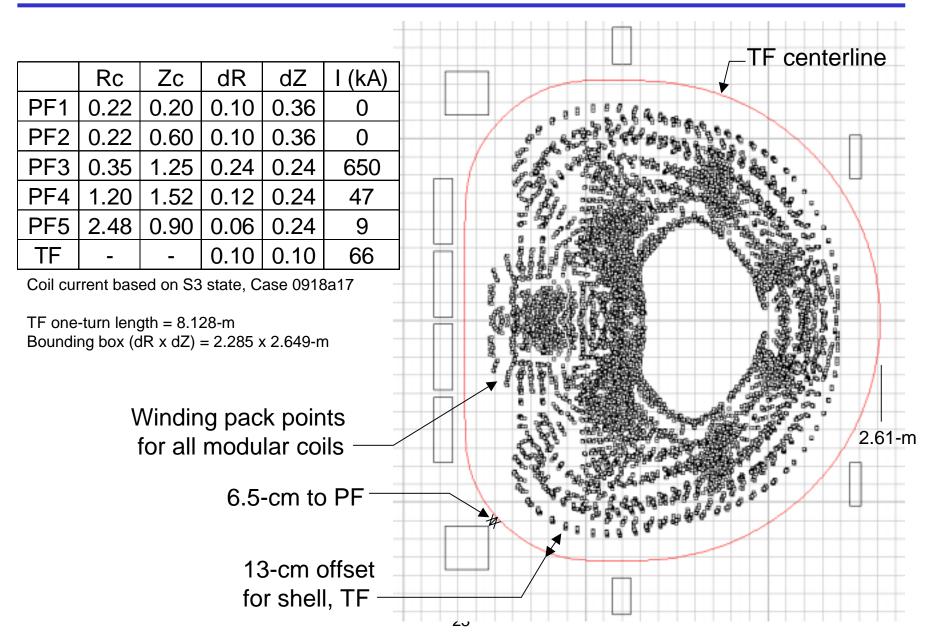
# Modular coil winding issues

| Requirements                                                                                                                                                                                    | Design                                                                                                                                                                                                            | Fab.                                                                            | Ass'y                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|--|
| <ul> <li>winding geometry<br/>definition,<br/>incorporating engr<br/>constraints</li> <li>winding accuracy</li> <li>current</li> <li>current<br/>waveforms</li> <li>Fault conditions</li> </ul> | <ul> <li>coil twist</li> <li>small bend radii,<br/>"squiggle"</li> <li>local<br/>convergence /<br/>divergence of<br/>winding packs</li> <li>leads</li> <li>conductor R&amp;D</li> <li>fault conditions</li> </ul> | <ul> <li>Dimension-<br/>al accuracy,<br/>inspection</li> <li>Potting</li> </ul> | Clamp<br>installation |  |

#### Modular coil structure issues

| Requirements                                                                                        | Design                                                                                                                                                                                                                                                                                | Fab.                                                                                                                                 | Ass'y                                                                                               |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| <ul> <li>maximum allow.<br/>deflection</li> <li>time constants</li> <li>Fault conditions</li> </ul> | <ul> <li>shell surface<br/>shape - must be<br/>smoother</li> <li>mechanics of<br/>describing<br/>winding form<br/>shape to vendors</li> <li>analysis of coil<br/>electrical<br/>response,</li> <li>reduce shell<br/>coverage via<br/>analysis (bigger<br/>holes, less wt.)</li> </ul> | <ul> <li>casting<br/>accuracy,<br/>cost</li> <li>machining<br/>vs grouting</li> <li>draft spec.<br/>for procure-<br/>ment</li> </ul> | <ul> <li>measurement<br/>of coil<br/>location</li> <li>geometry<br/>error<br/>correction</li> </ul> |  |

#### Modular coil engr. constraints


#### Quantitative constraints

- Bend radius
- Rate of twist
- Coil-coil separation, (current density, max coil temperature, max coil temp rise during pulse)
- Plasma-coil separation
- NBI access
- Peak power
- Current / turn
- Cost
- Qualitative constraints
  - "shape" complexity
  - "manufacturability"

#### **TF** Coils

- 18 equally spaced coils provide +/- 0.3 T
- Pre-formed and mounted on modular coil shell structure. Additional plates should not be necessary
- Wound from hollow copper conductor
- Pre-cooled to LN<sub>2</sub> temperature (like modular coils)

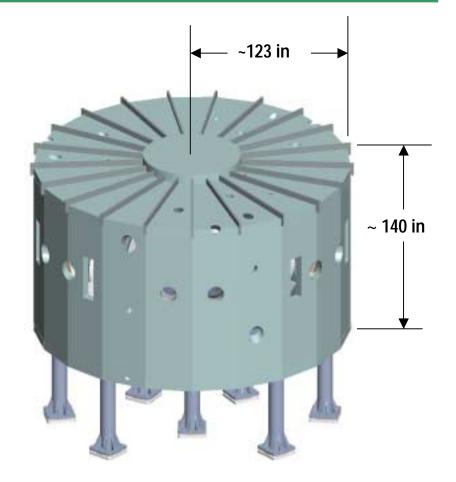
#### 18 TF Coil Option - PF/TF Layout 10/05/01



#### TF coil issues

| Requirements                                                                                    | Design                                                                                                                                                                                                   | Fab.                                                                                                                                                                                | Ass'y                                    |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| <ul> <li>total field</li> <li>max ripple</li> <li>Accuracy</li> <li>Fault conditions</li> </ul> | <ul> <li>Optimize for<br/>access: at same<br/>plane as modular<br/>coils, between<br/>modular coils, ?</li> <li>coils supported<br/>on plates or<br/>something else</li> <li>fault conditions</li> </ul> | <ul> <li>none unless<br/>coils are<br/>non-planar<br/>or if they<br/>must be<br/>wound onto<br/>modular coil<br/>structure</li> <li>draft spec<br/>for procure-<br/>ment</li> </ul> | <ul> <li>depends on<br/>shape</li> </ul> |  |

#### PF Coils


- 5 pairs of PF coils provide inductive current drive and plasma position and shape control
- 1.7T scenario requires 1Wb with a plasma current ramp rate of 3MA/s
- PF coils located outside modular and TF coils, supported off modular coil shell structure
- Wound from hollow copper conductor, glass-epoxy insulation
- Pre-cooled to LN<sub>2</sub> temperature (like modular and TF coils)

#### PF coil issues

| Requirements                                                        | Design                                                                                               | Fab.                                                                                                                                                                                | Ass'y                                |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| <ul> <li>current<br/>waveforms</li> <li>Fault conditions</li> </ul> | <ul> <li>location<br/>consistent with<br/>diagnostic<br/>access</li> <li>fault conditions</li> </ul> | <ul> <li>none unless<br/>coils are<br/>non-planar<br/>or if they<br/>must be<br/>wound onto<br/>modular coil<br/>structure</li> <li>draft spec<br/>for procure-<br/>ment</li> </ul> | <ul> <li>depends on shape</li> </ul> |  |

#### Cryostat

- Cryostat design uses commercial concept - Substructure sprayed with urethane foam
- Inexpensive construction facilitates
   maintenance access
- Holes provided for all vacuum vessel port extensions
- Silicon rubber "Gortiflex" boots to seal between vessel port extensions and cryostat
- 8" thickness reduces heat leaks to 2kW but still will require local heaters/blowers to avoid condensation



#### Cryostat issues

| Requirements  | Design                                                                                                                                                             | Fab.                                                 | Ass'y                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|
| Are there any | <ul> <li>NBI interface</li> <li>re-entrant duct design</li> <li>thermal analysis</li> <li>definition of heaters</li> <li>Access to core for maintenance</li> </ul> | <ul> <li>Spraying of poly-</li></ul>                 | <ul> <li>Boot</li></ul>  |
| other         |                                                                                                                                                                    | urethane insulation <li>draft spec for procure-</li> | interfaces <li>Leak</li> |
| requirements? |                                                                                                                                                                    | ment                                                 | checking                 |

# Interfaces

- Interfaces must be quantified among all WBS elements
- Propose spreadsheet on web to track
- WBS 1 has multiple interfaces

|   |            | 21 | Fueling                          |
|---|------------|----|----------------------------------|
|   | lacksquare | 22 | Vacuum pumping                   |
|   |            | 23 | Wall conditioning                |
|   |            | 24 | RF heating                       |
|   |            | 25 | Neutral beams                    |
|   |            | 3  | Diagnostics                      |
| • |            | 4  | Electrical Power                 |
| • |            | •  |                                  |
|   |            | 5  | Central I&C                      |
|   |            | 61 | Facility mods and test cell prep |
| • |            | 62 | Heating and cooling              |
| • |            | 63 | LN2 systems                      |
|   |            | 64 | Utility systems                  |
| • |            | 7  | Machine assembly                 |
| • |            | 82 | Project engineering              |
| • |            | 9  | Prep for ops                     |

WBS System

PFCs

Vacuum vessel

**PF Coils** 

**TF Coils** 

support structure

 $\bigcirc \bigcirc$ 

 $\bigcirc \bigcirc$ 

 $\bigcirc \bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc \bigcirc$ 

 $\bigcirc \bigcirc$ 

 $\bigcirc$ 

 $\bigcirc \bigcirc \bigcirc$ 

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

 $\bigcirc$ 

8

trim coils

Cryostat modular coils