PFC requirements

- Basic requirements
 - Carbon based
 - Provisions for adding (interface design included in research prep budget)
 - NBI armor
 - Trim coil armor
 - Inboard limiter / coverage
 - Divertor baffles and plates
 - Divertor "pumping"
 - Energetic ion loss armor
 - Make first plasma, field line mapping, ohmic operation
 - 0.3 MW for 0.3 s
- Upgrade requirements
 - Bakeable to 350C
 - > 60 % of power to divertor region, balance can be intercepted by walls
 - Provide penetrations, accommodate in-vessel diag. mounted on VV
 - Geometric tolerance of FW surface TBD, should be tune-able
 - Capability to bias the individual panels electrically up to 1kV
 - Full coverage of surfaces with carbon
 - 12 MW for 1.2 s

PFC envelope maximized inside vessel

- PFC envelope is pushed out to vessel wall to provide maximum plasma shape flexibility
- Divertor envelope is still evolving, but baffles for neutral particle control must be accommodated

PFC envelope

PFC envelope with plasma

PFC design concept

Poloidal ribs

- Staged implementation planned
 - Initial coverage with carbon tiles mounted on vessel assembly flanges to form array of poloidal limiters
 - Panels for NB armor and divertor region will also be provided after NBI installed
- Full coverage provided by mounting molded carbon fiber composite (CFC) panels on poloidal ribs
 - Panel size based on advice from BFG aerospace (~ 60 cm square, 1 cm thick)
- Ribs are separately cooled / heated with He gas for bakeout (350C) and normal operation
- Ribs are registered toroidally to VV but allowed to grow radially and vertically

CFC panels mounted on poloidal ribs

PFC panel / rib detail

 Details for one concept for panel attachment developed with BFG Aerospace

PFC implementation plan

		Poloidal limiters	Full CFC panel coverage,	Divertor	
Project Phase and PFC Stage:	Heating:	symmetry planes)	(including support ribs w/coolant tracing, CFC panels)	Divertor baffles	Active Divertor pumping
I,II,III OHMIC	Ohmic 0.3 MW, 0.3 s	x			
IV Aux htg.	3 MW NBI, 0.3 s	X	X		
V High Beta	6 MW NBI + 6 MW RF, 0.3 s	x	x	x	
VI Long pulse	6 MW NBI + 6 MW RF, 1.2 s	X	X	x	X

Project cost:

PFC implementation: Phases I, II, III

- NO Rib structure with cooling/heating lines
- Carbon (e.g. Poco, ATJ) tiles
 mounted directly to VV
- Carbon limiters are installed only at v=1/2 (bullet) cross section, but are semi-continuous poloidally

PFC simple limiter detail

• Details for flat carbon plates at either side of bullet shaped section (vessel field joint)

Heat loads on limiter

• Assume:

- 1 cm e-folding of particle energy
- 0.3 MW per pulse
- 6 toroidal locations to remove heat
- Poloidal peaking factor of 20

• Max flux = 2275 W/cm^2

Heat flux limit on isolated limiter tile

- 1-D calculation
- Ratcheting limit assumes radiation cooling only
- 10 minute cooldown between pulses
- 1200 C max temperature

PFC implementation: Phase IV

- Rib structure with cooling/heating line
- Panel coverage from upper divertor to lower divertor on inboard side
- Panel coverage for NBI armor on outboard side
- Exposed ribs protected with low Z coating:
 - a) B4C spray coating
 - b) Sheet metal covers with B4C coating

PFC implementation: Phases V,VI

- Phase V, divertor baffles
- Phase VI, with active pump

